System: R/3
System Requirements: SAP R/3, Basis Release 4.6C or higher
Release 610

2002/Q3
Material No.: 50054759

Copyright H’
DA

Copyright 2002 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in
any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed
without prior notice.

© SAP AG 2002

Notes on Trademarks:

m Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

m Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint®, and SQL Server® are registered
trademarks of Microsoft Corporation.

m IBM®, DB2®, 0S/2°, DB2/6000°, Parallel Sysplex®, MVS/ESA®, RS/6000°, AIX®, $/390°, AS/400°,
05/390% and 0S/400° are registered trademarks of IBM Corporation.

m ORACLE? is a registered trademark of ORACLE Corporation.

m INFORMIX®-OnLine for SAP and INFORMIX® Dynamic Server™ are registered trademarks
of Informix Software Incorporated.

m UNIX®, X/Open®, OSF/1® and Motif® are registered trademarks of the Open Group.

m HTML, DHTML, XML, and XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium, Massachusetts Institute of Technology.

m JAVAP® is a registered trademark of Sun Microsystems, Inc.

m JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for technology
developed and implemented by Netscape.

m SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow, SAP
EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo, and mySAP.com are
trademarks or registered trademarks of SAP AG in Germany and several other countries all over the
world. All other products mentioned are trademarks or registered trademarks of their respective
companies.

Course Prerequisites F’
DA

Compulsory:

SAPTEC - Basis Technology

BC400 - ABAP Workbench Concepts and Tools
BC401 - ABAP Objects

BC430 - ABAP Dictionary

Recommended:
® BC405 - Techniques of List Processing
® BC406 - Advanced Techniques of List Processing

© SAP AG 2002

Target Group H'
AP

® Participants:

Programmers and Consultants

® Duration: Three days

© SAP AG 2002

Notes to the user:

m The training materials are not teach-yourself programs. They complement the course
instructor's explanations. There is space included on the page for you to write down additional
information.

Course Overview ”’
A

Contents:

Course Goals
Course Objectives
Course Content

Overview Diagram

Main Business Scenario

© SAP AG 1999

(C) SAP AG BC410 1-1

Course Goals ”r
A

This course will prepare you to:

® Program dynamic screen processing.

® Program user dialogs using the different screen
elements in the SAP System.

© SAP AG 2002

(C) SAP AG BC410 1-2

Course Objectives !’
DA

At the conclusion of this course, you will be able to:

® Create a user interface for a program.
® Write user-friendly dialog programs.

® Use and process screen elements in the SAP
System.

© SAP AG 2002

(C) SAP AG BC410

1-3

Unit 1 Course Overview

Unit 2 Introduction to Screen Programming

Unit 3 The Program Interface

Unit 4 Output Elements

Unit 5 Input/Output Elements

Unit 6 Subscreens and Tabstrips Controls Elements
Unit 7 Table Controls Elements

Unit 8 Context Menus

Unit 9 Lists on Screens

At the end of each unit are the relevant exercises and solutions.
Appendix

© SAP AG 2002

(C) SAP AG BC410

1-4

User Dialogs

)
. . ~r’ /)
A user dialog is any form o

= Entering date\

A -\\Choosispg\vjl)ﬁemﬁ@w
_— ALf \ [“ —

L (\:llcklig K/bgtt n / _
n CIickin?o\r,dhuﬁl)é-c ckingalistentry
Pt -

/

—

© SAP AG 1999

(C) SAP AG BC410

1-5

Course Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

Main Business Scenario !’
SAF

DD ® During the course, each participant will write a
complex transaction for maintaining flight and flight
booking data with the following functions:

m Display and change information for a selected
flight

m Display the bookings for selected flight

© SAP AG 2002

(C) SAP AG BC410

1-7

SAP Programming Model H’
SAF

Single-screen transaction

® Input screen and data screen
combined in one window

® Switch between Create, Change,
and Display

. ® Direct access to each object
= { ® System retains context after
B saving

© SAP AG 2002

The aim of the new SAP programming model is to replace long, nested screen sequences with single-
screen transactions.

The main advantage is that it improves the usability of the R/3 System. The transactions are much
simpler for users to use.

Input screen and data screen are combined in one window. This saves the user unnecessary navigation
and ensures the correct business context.

Single screen transactions provide the user with the program session that best fits his or her
authorizations, allow the user to directly access the objects to be edited; and limit the selection area using
a filter, a tree structure, or, for example, the last edited object.

After saving the data to the database, the user can display the edited object again to check the changes he
or she has made.

(C) SAP AG BC410 1-8

Application fundti
P¥ ions
da Treeom| | |2 Park (£ Hold 8 simulate | | &% change leading comparycode,. | &7 Editing aptions
e - Created on |l Transact Riitoice) Bal 10.000, 80 oo
L1 Screen variants — =
B Ac290 07.01.00 Basie data Fayment Detalls | Tax | Notes :
Vendor
B RE contracts 12.05.99
Bl RE ohijaets 12,0598 Vendor 1994 i [
Bl RE sstilement 12.05.09 nvoice data 2q 08,2000 IDES Canada
21 standard 1 10.05.99 Posting date 2506, 2060 TORONTO TEE 4R3
B standard 3 14.05.99 Referenice CANADA
B standard 4 17.06.99 e
B with project 16.41.08 . T S— &
B with businass area 05.08.98 :"‘“m J Ll
31 with ec and guantity 10.05.39 Fesaraunt WhIYR (16% domeste ing & =
B i s [oaiomes | N Ob je@tunlD
= 2 Acct assionmenttermplates Cormparny code 1000 IDES AG 1000 Frankfurt Not available
B acz0s 28.01.00 T o |
Bl roa12.4 051199 |
B ac4iz.B 05.11.99
B Aceos 280993 —
B acei0 27paga | ward 1)] L]
(1 Held dacuments -EE_S‘ [GiLacct |Shortedt DG |Doceurrencyamount[Loccurramaunt [P [Fbi o i
|o#1435008 lannual Ban.5 De.[] 18,0080, 00 18 660,00 1000
i 5 De.fsl 0,00,
s Do ¥ 0,80
5 Do [# o,00
5 De.[s 0,00
5 s [# 0,00
. | . 5 e [#] 8,68 =1l
Object sejection = :
«[r «[r
R EEENE R W E = . .
g Details of objecg

20, (1),(400). P=1) hdlfB020 | 148

© SAP AG 2002

®m Transaction FB60 has been redesigned in accordance with the new programming model.
m The screen is divided into four sections, each containing different functions:
* Object selection: You can select the object you want to edit from a tree structure.
* Object ID: You can edit the key data and attributes of the whole object.
* Details of object: You can select subobjects for editing.
¢ Application functions: Only a few functions are available from the application toolbar as a result of
the new single screen transactions. These include display options, (such as showing and hiding screen
areas), creating new objects with templates, or toggling between different sessions of a program.

(C) SAP AG BC410 1-9

Exercise: Screen Programming

Process flight

Display
flight bookings

®© View
QO Maintain flight data
O Maintain bookings

Connection Aircraft Bookings

View flight data View technical details for aircraft Maintain bookings

© SAP AG 2002

(C) SAP AG BC410 1-10

ABAP Program Types

Executable
program Module pool
(Type 1) (Type M)

Interface pool

Function
group (Type J) orogram
Class pool

. (Type) = (Type K) JType)

© SAP AG 2002

Include

\

m Executable program (type 1)

Executable programs are run directly from the ABAP Editor. A set of processing blocks is processed in a
predefined order. You can use a standard selection screen. Type 1 programs normally create and display
a list.

® Module pool (type M)

For a type M program to be executable, you must create at least one transaction code in which you
specify an initial screen. You can control the subsequent screen sequence either statically (in the screen
attributes) or dynamically (in the program code).

m The following types of programs cannot be executed directly. They serve as containers for
modularization units, which you call from other programs. Whenever you load one of these modules, the
system loads its entire main program into the internal session of the calling program.

* Function group (type F)
A function group can contain function modules, local data declarations, and screens.
* Include program (type I)
An include program can contain any ABAP statements.
* Interface pool (type J)
An interface pool can contain global interfaces and local data declarations.
* Class pool (type K)
A class pool can contain global classes and local data declarations.

(C) SAP AG BC410 111

Program Organization H’
DA

Create Program | | 4 System Help

30 Cee SHE D00 BHE @B

Program SAPMZ##BC410_SOLUTION Object Navigator

v/ With TOP Include Object name
¢ K SAPMZ##BC410_SOLUTION

Dictionary structures
Fields

PBO modules

PAIl modules
Subroutines

Screens

GUI status

GUI title
Transactions
Includes

Global declarations

dvvVvvvvVvvvew
BODDDDDODOO

FEE) ekl | MZ##BC410_SOLUTIONTOP

| MZ##BC410_SOLUTION0O1

PAI modules MZ##BC410_SOLUTIONIO1
| MZ##BC410_SOLUTIONFO1
|

i MZ##BC41 LUTIONEO1
Subroutines ##BC410_SOLUTIONEO

Events

© SAP AG 2002

m In the simplest case, your program consists of a single source that contains all the necessary processing
blocks. However, to make your program code easier to understand and to enable you to reuse parts of it
in other programs (for example, for data declarations), you should use include programs.

m Whenever you create a program from the Object Navigator, the system proposes to create it With TOP
include. Selecting this option will help you to create clearly structured programs.

B When you create processing blocks, the system automatically asks in which include program it should
place the corresponding source code.

m If you specify an include program that does not yet exist, the system creates it and inserts a
corresponding INCLUDE statement in the main program.

(C) SAP AG BC410 1-12

Tables of the Flight Data Model (BC410)

Connection Flights Bookings Aircraft
SPFLI SFLIGHT SBOOK SAPLANE
(— MANDT (— MANDT (— MANDT (: — MANDT
@ CARRID 4—@ CARRID *— @ﬁ CARRID @ PLANETYPE
{@®= CONNID €4— == CONNID 4¢— (== CONNID SEATSMAX
AIRPFROM | |{== FLDATE 4¢— (&= FLDATE TANKCAP
AIRPTO SEATSMAX | | = BOOKID CAP_UNIT
CITYFROM SEATSOCC CUSTOMID WEIGHT
CITYTO PRICE LUGGWEIGHT WEI_UNIT
COUNTRYFR CURRENCY WUNIT OP_SPEED
COUNTRYTO PLANETYPE CANCELLED SPEED_UNIT
FLTIME
© SAP AG 2002
® The most important table fields used in this course and their meaning:
m SPFLI
* CARRID Airline identified
* CONNID Connection code
* AIRPFROM, AIRPTO Departure airport, arrival airport
* CITYTO, CITYFROM Arrival city, departure city
m SFLIGHT
* CARRID, CONNID See SPFLI
* FLDATE Flight date
* SEATSMAX, SEATSOCCMaximum capacity, occupied seats
* PRICE Basic flight price
* CURRENCY Currency
® SBOOK
* CARRID, CONNID, FLDATE See SFLIGHT
* BOOKID Reservation number
* CUSTOMID Customer number
m SAPLANE
* PLANETYPE Plane type
* SEATSMAX Maximum capacity
(C) SAP AG BC410 1-13

Introduction to Screen Programming HV
DA

Contents:

Principles of screen programming
Screen elements
Screen processing

Dynamic screen modifications

Screen sequence

© SAP AG 2002

(C) SAP AG BC410

2-1

Screen Programming: Objectives H’
DA

At the conclusion of this unit, you will be able to:

® Create and process screens

® Add ABAP Dictionary Screen elements
@ Explain PBO and PAI processing
® Make dynamic screen modifications

® |nsert screen sequences

d

PBO PAI ‘ PBO‘ PAI ‘ PBO‘ PAI
I I

© SAP AG 2002

(C) SAP AG BC410 22

Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

Screen Programs: Principles

© SAP AG 2002

Principles of screen programming

Screen elements
Screen processing

Dynamic screen modifications

Screen sequence

(C) SAP AG

BC410

Strengths of Screens

Table control

| |Flight| From To |
_ ||oa00 | Frankfurt |New |A |
_[0402 | Frankfurt | New —
D_attha entr){) | |2407 | Berlin SanF| v
with consistency P >
checks “ < | >
an

. f" Screen Tabstrip control
From | Arrival |

Country |DE

City [Berlin

Time 10:10:00

© SAP AG 2002

m Screens allow you to enter and display data.

B One of their strengths is that they combine with the ABAP Dictionary to allow you to check the
consistency of the data that a user has entered.

m Screens allow you to create user-friendly dialogs with pushbuttons, tabstrip controls, table controls, and
other graphical elements.

(C) SAP AG BC410 2-5

Screens in Dialog Programs

Program ABAP program

start

Data objects

Database
table

> ABAP

processing
block

Process | ¥
Before
Output

Process
After

Input

ABAP runtime system

© SAP AG 2002 ime

m Let us look at a simple dialog program with a selection screen as its initial screen and a screen for
displaying information for a selected data record.

® When the program starts, the system loads its program context and prepares memory space for the
program data objects. The selection screen is displayed.

m The user enters data on the selection screen and chooses Execute.

m In a processing block, the program reads data from the database. To do so, it passes information about
the data requested by the user to the database. The database fills a structure with the required data record.

m The processing logic then calls a screen. This triggers a processing block belonging to the screen called
Process Before Output (PBO). Once the PBO has been processed, the data is transferred to a structure
that serves as an interface to the screen. It is then transferred to the screen and displayed.

®m Any user action on the screen (such as entering data, choosing a menu entry or clicking a pushbutton)
returns control to the runtime system. The screen fields are then transported into the structure that serves
as the interface between screen and program, and the runtime system triggers another processing block
belonging to the screen, which is called Process After Input (PAI) and is always processed after a user
interaction.

(C) SAP AG BC410 2-6

Screen Programs: Screen Elements

Principles of screen programming
, Screen elements
Screen processing

Dynamic screen modifications

Screen sequence

© SAP AG 2002

(C) SAP AG BC410 2.7

Attributes of Screen Elements (Key) H’
AP

General attributes
I

Static attribute,

—— dynamically modifiable
|) List
e Attribute _ S Attribute 1
e Attribute _ °
e Attribute _ °
) [
. . Dynamically modifiable

attribute, not accessible
statically

© SAP AG 1999

m The screen elements text field, input/output field, status icon, group box, radio button, checkbox, and
pushbutton all have general attributes, Dictionary attributes, program attributes, and display attributes.

m The elements subscreen, tabstrip control, and table control have general attributes, and special attributes
relating to the respective type.

m We can divide the attributes of an element into:
e Statically definable attributes that cannot be changed dynamically
e Statically definable attributes that can be changed dynamically
® Attributes that can only be changed dynamically

m For complete documentation of the attributes of screen elements, see the online documentation
(reference DIA-2).

(C) SAP AG BC410 2-8

Screen Programs: Screen Processing

Principles of screen programming
Screen elements
, Screen processing

Dynamic screen modifications

Screen sequence

© SAP AG 2002

(C) SAP AG BC410 2-9

Use SAP Partner Only

Internal

Screens

SAP screen as container
for other screen elements

© SAP AG 2001

m Screens are freely definable objects that you can use to display or enter information through input and
output fields, lists, and so on.
m They are a form of dialog between the user and the ABAP program.

(C) SAP AG BC410 2-10

12ujied dVS 9sMn euiaju]

Ajug

Defining and Managing Screens

Screen _

Text field -------

,7 _______

Screen Attributes L

Flow logic]
PBO. |

PAL.

Box & ©Bela
2 ||

© SAP AG 2001

m A screen consists of a screen image and its flow logic. Strictly speaking, it is a program that controls the
way the screen image is processed. For further information about programming screen flow logic, refer
to the ABAP User’s Guide.

m Screens have four components: the screen mask, the screen attributes, the element list, and the flow
logic. The flow logic contains flow logic code (not ABAP statements).

m Screens are containers for other screen elements.

(C) SAP AG BC410 211

Screens: Attributes

Screen
attriITutes
I I I I I

‘ Admin. ‘ Type ‘ Size ‘ Sequence ‘ Settings
e Program e Normal e Static ° °
e Screen no. e Subscreen - Maintained
e Short desc. e Modal dialog - Occupied e Hold data
e Screen group box e Dynamic e Fixed font
e Changes e Selection e Runtime
e Generation screen compression
e Status e Context menu

e Original lang.
e Dev. class

© SAP AG 2002

form

Each screen has a set of administration attributes that specify its type, size, and the subsequent screen. It

also has settings that influence other properties of the screen and of its components.

The administration attributes Program and Screen number identify the screen by its number and the
program to which it belongs.
Screen numbers greater than 9000 are reserved for SAP System customers. Screen numbers 1000

through 1010 are reserved for the maintenance screens of ABAP Dictionary tables and the standard

selection screens of executable programs.

The screen type identifies the purpose of the screen. Certain other special attributes of a screen and its
components depend on this attribute.
The Next screen attribute allows you to specify the screen that should be processed after the current
screen in a fixed sequence.
For a full list of screen attributes with their meanings, refer to the online documentation path in appendix

reference DIA-3.

(C) SAP AG

BC410

2-12

Creating Screen ”'
DAF

Screen
Painter
Screen

Screen type normal
Next screen 200

10 characters
Input x

Screen Element Flow logic
attributes layout attributes
L) 09, NUMBER PROCESS BEFORE OUTPUT.
ShT°“tdes°"pt'°“ Number: character MODULE INIT.
es

PROCESS AFTER INPUT.
MODULE READ_100.

© SAP AG 2002

® When you create a screen, you must:
e Set the general screen attributes (on the attribute screen).

Design the screen layout (in the layout editor).

[]
e Set the field attributes (in the field list).
[]

Write the flow logic (in the flow logic editor).

(C) SAP AG

BC410

Creating Screens: Screen Attributes "

Object

Navigator

Create Screen

<7 [<Program name>

[2] Program object types
> [Fields Create |

<7] Screens

0100 Data selection '

0200 Display

Screen
Screen Attributes Painter

* Normal
Subscreen

Modal dialog box
Selection screen

(1120304,

© SAP AG 2002

To create a screen from the object list in the Object Navigator, create a new development object with the
type Screen. Position the cursor on Screens and right-click.

The Object Navigator automatically opens the Screen Painter.

When you create a screen, you first have to enter its attributes. Enter a screen number, a short text, and a
screen type. You will usually use the screen type Normal. You can specify the number of the next screen
in the Next screen field.

If you enter O (or no value) for the next screen, the system resumes processing from the point at which
the screen was called once it finishes processing the screen itself.

You can also create a screen by writing a CALL SCREEN <nnnn> statement in the ABAP Editor and
then double-clicking the screen number <nnnn>.

(C) SAP AG BC410 2-14

Creating Screens: Layout

Airline carrier

Flight number

(3 e 1 T)

(102

© SAP AG 2002

()

(@)

You usually define screen elements by adopting the corresponding field descriptions from the ABAP
Dictionary. However, you can also use field descriptions that you defined in your program. To do this,
you must generate the program first.

You can use the key word texts and templates either together or separately.

The graphical layout editor provides an easy way of defining the various screen elements (such as
input/output fields, key word texts, and boxes). You simply choose the element you require, and position
it on the screen using the mouse.

To delete a screen element, select it and choose Delete.

You can move elements on the screen by dragging and dropping them with the mouse.

Note: The graphical layout editor is available under Windows NT, Windows 95, Windows, 98, Windows
2000, and UNIX. If you use a different operating system, you must use the alphanumeric Screen Painter.

(C) SAP AG BC410 2-15

Creating Screens: The Element List

References

Modification groups
Display attributes

Special attributes

Texts and /O fields
General attributes

Field name Type Line..

SDYN_CONN-CARRID CHAR 3
SDYN_CONN-CONNID CHAR 5

(1120314

© SAP AG 2002

m To allow you to set the attributes of all screen elements, the Screen Painter contains an element list with
six views. You can also display all of the attributes for a single element from any of the lists (Attributes).
You can also maintain the attributes for an element from the layout editor using the Atributes function.

m In the Screen Painter, you work with external data types. These correspond to the data types in the
ABAP Dictionary. For fields that you have chosen that are defined in the ABAP Dictionary, the system
displays the external data type in the Format column. For elements (templates) that do not have an
ABAP Dictionary reference, you must enter an external data type yourself.

m To find out the corresponding external data type for an internal data type (ABAP data type), see the
keyword documentation for the ABAP TABLES statement. For example:

ABAP Dictionary Data Type ABAP Data Type
CHAR C
NUMC N

(C) SAP AG BC410 2-16

Creating Screens: Flow Logic

Screen
Painter

PROCESS AFTER INPUT.
MODULE read scarr.

Double-click

ABAP. =~ Create PAI Module

MODULE read scarr INPUT.
SELECT SINGLE * FROM scarr
WHERE carrid = sdyn_ conn-carrid

ENDMODULE .

(102X3X4;

© SAP AG 2002

' MBC410_DISPI01 ~ New include

'SAPMBC410_DIsp Main program

Screens have their own set of keywords that you use in the PBO and PAI events of the flow logic. Refer
to the online documentation DIA4 for an overview of existing key words.

m In the flow logic, you write MODULE calls. The modules are components of the same ABAP program.
They contain the ABAP statements that you want to execute.

You can create a module by double-clicking the module name in the flow logic Editor.

To create a module from the object list in the Object Navigator, choose the development module PBO
module or PAI module.

You can call the same module from more than one screen. If the processing depends on the screen
number, you can retrieve the current screen number from the field SY-DYNNR.

Note that the modules you call in the PBO processing block must be defined using the MODULE...
OUTPUT statement; modules that you define using the statement MODULE... INPUT can be called
only in the PAI event.

(C) SAP AG BC410 217

Data Visibility

ABAP

TABLES sdyn conn. LH 0400 FRANKFURT FRA DE ..

DATA wa spfli TYPE spfli. 100 LH 0400 FRANKFURT ...
DATA: dynnr TYPE sy-dynnr, 0110
ok code TYPE sy-ucomm. BOOK

jdenticalinames

Element list:
SDYN_CONN-CONNID LH
SDYN_CONN-CARRID 0402
OK_CODE

DYNP

© SAP AG 2002

m There are many different software processors involved in the screen processing of your program. The
ABAP processor controls the program flow within a module. The DYNP processor controls the flow
logic and prepares data to be displayed on the screen.

m During this process, several sets of data are visible. You work with the global fields of your program
within the module. Global fields are created in the TOP include using declarative statements, for
example, TABLES or DATA.

m The fields that are recognized by the system from the element list are used to retrieve data to display on
the screen, and also to transport data changed by the user. This occurs automatically, when you get fields
from the ABAP Dictionary or from the program in the Layout Editor.

m [t is necessary to copy the data because of the different sets of data fields. A system program carries out
the copying process. At defined instances during the process, the identically named fields of DYNP and
ABAP are compared.

(C) SAP AG BC410 2-18

Data Exchange: Screens - ABAP Programs Hr
oL

Time
PBO Program work area
MODULE trans_to_ 100 TABLES: sdyn conn.
After PBO
CARRID CONNID
MODULE trans_ to 100 OUTPUT.
MOVE-CORRESPONDING
wa_spfli TO sdyn conn.
ENDMODULE .
TABLES: sdyn_conn.
Before PAI
CARRID CONNID
PAI MODULE trans from 100 INPUT.
MODULE trans from 100 MOVE-CORRESPONDING
v sdyn conn TO wa_spfli.
ENDMODULE .
© SAP AG 2002

m For a screen and its ABAP program to be able to communicate, the fields on the screen and the
corresponding fields in the program must have identical names.

m After it has processed all of the modules in the PBO processing block, the system copies the contents of
the fields in the ABAP work area to their corresponding fields in the screen work area.

m Before it processes the first module in the PAI processing block, the system copies the contents of the
fields in the screen work area to their corresponding fields in the ABAP work area.

B You should use your own structures (such as SDYN_CONN) for transporting data between the screen
and the ABAP program. This ensures that the data being transported from the screen to the program and
vice versa is exactly the data that you want.

(C) SAP AG BC410 2-19

Screen Programs: Screen Modifications

Principles of screen programming
Screen elements
Screen processing

, Dynamic screen modifications

Screen sequence

© SAP AG 2002

(C) SAP AG BC410 2-20

Dynamically Modifiable Static Attributes

Attributes SCREEN
— General SCREEN-NAME
e Object name
o Modif. groups SCREEN-GROUP1
e Size SCREEN-GROUP2

SCREEN-GROUP3
SCREEN-GROUP4

| Program SCREEN-LENGTH

e Dialog behavior SCREEN-INPUT

SCREEN-OUTPUT
SCREEN-REQUIRED
SCREEN-INTENSIFIED

Displa
e Py SCREEN-INVISIBLE
C SCREEN-ACTIVE

© SAP AG 2002

m At the beginning of the PBO, the runtime system reads the statically-created and dynamically-modifiable
attributes of each screen element on the current screen into a system table with the line type SCREEN.

m For a complete definition of the SCREEN structure, refer to the Help on...(Ctrl-F8) documentation on
Table, Structure, or View in the ABAP Editor (Ctrl-F8).

m The graphic shows the assignment of the fields in the system table SCREEN to the names of the
statically created attributes of the screen elements.

(C) SAP AG BC410 2-21

Use SAP Partner Only

Internal

Modifying Attributes Dynamically: Example

© SAP AG 2001

® Dynamic changes to the attributes of screen elements are temporary.

m Using this technique to modify the attributes of a screen element (for example, to change whether an
input/output field is ready for input), you can replace long sequences of separate screens, which are more
costly in terms of both programming time and run time.

(C) SAP AG BC410 2-22

12ujie d dVS 9SS |euiaju]

Ajug

The SCREEN System Table

)
o | u
- o~ ® < . TR
o o o o = E £ @@ w
w > = =) > O E=lagl 5| 2 7| >
= o o o) o Z 2 F|lg w 2 E
< (14 14 14 14 w o S5 g = 2 o0
z O O () O -4 2 0|l 2 2 <
FIELD1 201|111 0|1
RADIO1 ADM 1.1 .1 .0 0 0 1
RADIO2 ADM 1/1 /1 ,0/|0/|0 1
RADIO3 ADM 1/1 /1 ,0/|0/|0 1
P_TOG 35, 0|0 0 0 o0 |1
FIELDA SEL 15,1 |1 0 0 0 | 1
FIELDB SEL 15/ 1 1 . 0/|0 0 | 1

© SAP AG 2002

m The system table with line type SCREEN is called SCREEN system table in the following unit.
® When a screen is processed, the SCREEN system table contains an entry for each element created in the
Screen Painter for that screen.

(C) SAP AG BC410 2-23

NAME |INPUT OUTPUT | REQ. FIELD
FIELD1| [d 4 % Copy the static
P TOG O o O attributes before PB
FIELDA A O
FIELDB %! %! O
Element list
screen 100
T
5 e w
L = o o 2
= 2585
Fd Z 0O X <
FIELD1T 1 1 1 1
PTOG O 0o 1
FIELDA 1 1 0 1
PBO PAI FIELDB 1 1 0 1
© SAP AG 2002

m The system table SCREEN is initialized at the start of the PBO event for the current screen. To do this, a
system program copies the statically defined attributes of the individual screen elements into the table.
®m You can then change the dynamically modifiable attributes of the elements on the screen in a module at
PBO using the following statements:
LOOP AT SCREEN.

MODIFY SCREEN.
ENDLOOP.
To do this, you use the structure SCREEN, which is created automatically by the system, and filled with
the values of each successive line of the system table in the loop. Set attributes have the value ‘1°,
attributes that are not set have the value ‘0’. To change the system table, use MODIFY SCREEN within
the loop.

m To find the element whose attributes you want to modify, you can use a LOOP on the SCREEN table
and query one of the following fields: SCREEN-NAME or SCREEN-GROUP1 to SCREEN-GROUP4.

(C) SAP AG BC410 2-24

The Modification Group Attribute H’
DA

Screen
Painter

Name | Group 1| Group 2 | Group 3|Group 4

Element list: Modification groups

FIELD1 ADM TRA
P_TOG ADM
FIELDA| E=8 TRA

FIELDB| £

© SAP AG 2002

B You can change the attributes of several screen elements simultaneously at run time, by including them
in a modification group in the Screen Painter. Assign all elements that will be changed within a single
processing step to a group in the Screen Painter. To do this, enter a group name for each of the relevant
elements in one of the GROUP1 to GROUP4 fields.

B You can include each element in up to four modification groups. You can choose any three-character
sequence for the group name. You can assign elements to a modification group either in the element list
or the layout editor in Screen Painter.

(C) SAP AG BC410 2-25

Modifying Attributes Dynamically: Program

© SAP AG 2002

Screen
PROCESS BEFORE OUTPUT. Painter

MODULE modify screen.

ENDMODULE .

ABAP
MODULE modify screen OUTPUT.

LOOP AT SCREEN.

IF screen-groupl = 'SEL'.
screen-input =
ENDIF.

IF screen—-name= 'FIELD1'.
screen-active= .
ENDIF.

MODIFY SCREEN.

ENDLOOP.

B You must program your screen modifications in a module that is processed during the PROCESS
BEFORE OUTPUT processing block.

B You use a loop through the table SCREEN to change the attributes of an element or a group of elements.
(LOOP AT SCREEN WHERE . . . and READ TABLE SCREEN are not supported).

m To activate and deactivate attributes, assign the value 1 (active) or O (inactive), and save your changes
using the MODIFY SCREEN statement.

m Note that elements you have defined statically in the Screen Painter as invisible cannot be reactivated
with SCREEN-ACTIVE = 1. Instead, use the statement SCREEN-INVISIBLE = 0. However, elements
that you have statically defined as visible in the Screen Painter can dynamically be made invisible with
SCREEN-ACTIVE = 0. This has the same effect as the three statements SCREEN-INVISIBLE = 1,
SCREEN-INPUT = 0, SCREEN-OUTPUT = 0.

(C) SAP AG

BC410 2-26

Screen Programs: Screen Sequence

Principles of screen programming
Screen elements
Screen processing

Dynamic screen modifications

, Screen sequence

© SAP AG 1999

(C) SAP AG BC410 2.27

Determining the Next Screen

Reaction to user PAI
input

PBO PAI

PAI

»> PBO PAI

PAI Reaction to user

input

"P PBO

© SAP AG 2001

m For complex transactions it may be necessary to use multiple screens. The initial screen is determined
when creating the transaction code. Each screen determines the next screen according to the user input.

m The next screen is entered statically in the screen attributes. At run time you can temporarily override the
static next screen using the SET SCREEN <nnnn> statement.

(C) SAP AG BC410 2-28

Static Screen Sequences H’
SAF

Screen Atfributes Screen Attributes

Screen number 100 Screen number 200

Next screen 200 Next screen 300
17 4
—p — —> —

= v v
— mmjp| w0 ar | EEp | P2° PAT

© SAP AG 1999

B You can establish a static sequence of screens by entering a value in the Next screen field of the screen
attributes.

m If you enter O (or no value) as the next screen, the system resumes processing from the point at which the
screen was initiated, once it has finished processing the screen itself.

(C) SAP AG BC410 2-29

Setting the Next Screen Dynamically

Screen Attributes

Screen Attributes

Screen number 100 Screen number 300
Next screen 200 Next screen 400
"4
—> —> —
=8 v v
“ PBO PAT —J PBO PAI »
I 400
MODULE ...
ENDMODULE .

© SAP AG 2002

m The SET SCREEN <nnnn> statement temporarily overwrites the Next screen attribute.

m The screen <nnnn> must belong to the same program.

m The next screen is processed either when the current screen processing ends, or when you terminate it
using the LEAVE SCREEN statement.
m To specify the next screen and leave the current screen in a single step, use the
LEAVE TO SCREEN <nnnn> statement.

(C) SAP AG

BC410

2-30

Inserting Screen Sequences W

PBO

PAI > PBO PAI

© SAP AG 2002

®m You can insert a screen sequence. This adds another layer to a stack.

B You insert a screen sequence using the CALL SCREEN <nnnn> statement.

m Note: Layers created in this way must be removed afterwards. You can do this by setting the next screen
statically or dynamically to the initial value (0) at the end of the inserted screen sequence.

(C) SAP AG BC410 2-31

Screen Attributes Screen Attributes
o
o
Screen number 100 Screen number 300|®
Next screen 200 Next screen 301
!7 |
Z==3 o
[]
[]
—>
=E v

— » PBO PAI PBO - PAI

MODULE ... MODULE . ..
-
<

ENDMODULE . ENDMODULE .

© SAP AG 2002

To interrupt processing of the current screen and branch to a new screen (or sequence of screens), use
the CALL SCREEN <nnnn> statement. The screen <nnnn> must belong to the same program.

In the program, the system constructs a stack. The stack has to be destroyed before the end of the
program.

To return to the statement following the CALL SCREEN statement, you can use either SET SCREEN 0.
LEAVE SCREEN. or LEAVE TO SCREEN 0. The screen that called the other screen is then processed
further.

If you use the above statements outside a call chain, the program terminates, and control returns to the
point from which it was called. You can also terminate a program using the ABAP statement LEAVE
PROGRAM.

(C) SAP AG BC410 2-32

Calling a Dialog Box Dynamically

Screen 101

Screen Attributes

Screen type

o Modal dialog box

Next. screen 101

MODULE user_ command INPUT.

cALL ScREEN [[if]
STARTING AT lc ur.

ENDMODULE .

© SAP AG 2002

MODULE user_ command INPUT.

e

1101

caLL screen L]
STARTING AT lc ur
ENDING AT rc 1lr.

ENDMODULE .

m In the CALL SCREEN statement, you can use the STARTING AT and ENDING AT additions to
specify the position and size of the screen that you are calling. The screen in the CALL SCREEN
statement must be defined as a modal dialog box (to comply with the SAP System’s ergonomic

standards).

m If you omit the ENDING AT statement, the size of the dialog box is determined by the Used size in its
screen attributes. The system then determines the dialog box size using the Occupied size screen

attribute.

m If you use the ENDING AT addition, the system displays as much of the dialog box as will fit into the
available space. If there is not enough room to show the entire dialog box, it appears with scrollbars.

(C) SAP AG

BC410

2-33

Window Coordinates

CALL SCREEN
STARTING AT PE-=SF ANl NRNT|o)ol-F ol ale)]
ENDING % right col lower row.
0 left_col right_col
| | |
>
0 -
Upper_row ;
[+
lower_row
© SAP AG 2002

m The starting position (origin) of every SAP System window is its top left-hand corner.

m The values that are used for the variables left_col, upper_row, right_col and lower_row in the folowing
statement relate to the R/3 Systemscreen from which you display the second screen with CALL
SCREEN (screen 100 in the example in the figure).

CALL SCREEN <nnnn>
STARTING AT left_col upper_row
ENDING AT right_col lower_row.

(C) SAP AG BC410 2-34

Setting the Cursor Position Dynamically

SET CURSOR
FIELD <£f> [OFFSET <o>].

Screen
Painter

PROCESS BEFORE OUTPUT.
MODULE set_cursor.

SET CURSOR
FIELD ‘SDYN CONN-CONNID' .

© SAP AG 2002

m When the system displays a screen, it automatically places the cursor in the first input field. If you want
the cursor to appear always in a different field, you can enter the corresponding element name in the
Cursor position field of the screen attributes.

B You can also tell the system in the PBO event to position the cursor in a particular field. This makes
your application easier to use.

B You can set the field in which the cursor should appear in the program
using the ABAP statement:

SET CURSOR FIELD <object_name> OFFSET <position>.

m <field_name> can be a unique name in quotation marks, or a variable containing the object name. To
place the cursor at a certain position within a field, use the OFFSET parameter, specifying the required
position in <position>.

m The system then places the cursor at the corresponding offset position, counting from the beginning of
the field.

(C) SAP AG BC410 2-35

Dialog Programming: Unit Summary H’
DA

. You are now able to:

Create and process screens

Add ABAP Dictionary Screen elements

®

[

® Explain PBO and PAI processing

® Make dynamic screen modifications
[

Insert screen sequences

© SAP AG 2002

(C) SAP AG BC410

2-36

Exercises

Unit: Introduction to Screen Processing

Topic: Creating screens

*e®

At the conclusion of these exercises, you will be able to:

e C(Create screens and use them in your programs

Create a screen and use it in your program.

D,

1-1

1-2

1-3

1-4

Create a screen transaction.

1-1-1 Create development class ZBC410_## where ## is your group number and
assign it to the change request provided by your instructor.

1-1-2 Create program SAPMZ##BC410_SOLUTION with a TOP include. Accept
the system’s proposal for the name of the TOP include. Use the sample solution
SAPMBC410ADIAS _DYNPRO as a guide.

Create the following program object:

Screen 0100 Description: Maintenance
screen

Type: Normal

Next screen: 0100

In the PAI event of screen 100, call a module user_command_100. Use forward
navigation to create the module in a new include. Accept the system’s proposal for the
include (MZ##BC410_SOLUTIONIO01). In this module, use a statement to terminate
the program and return to the point from which it was called.

Assign a transaction code Z##BC410_SOLUTION to the program.

(C) SAP AG

BC410 2-37

Topic: Creating a screen

Model Solution SAPMBC410ADIAS_DYNPRO

Main program

INCLUDE MBC410ADIAS_DYNPROTOP.

INCLUDE MBC410ADIAS_DYNPROIO1.

Flow logic screen 100

PROCESS BEFORE OUTPUT.
* MODULE STATUS_0100.
*

PROCESS AFTER INPUT.

MODULE user_command_0100.

Top include

PROGRAM sapmbc4lOadias_dynpro.

PAI module include

MODULE user_command_0100 INPUT.
LEAVE TO SCREEN O.
ENDMODULE . " user_command_0100

/ Unit: Introduction to Screen Processing

INPUT

Solutions

(C) SAP AG BC410

2-38

The Program Interface HV
AP

Contents:

® Overview: GUI titles and GUI statuses
® Creating a GUI status

® Using a GUI status

© SAP AG 1999

(C) SAP AG

BC410

3-1

Unit Objectives

At the conclusion of this unit, you will be able to:

® Create a user interface for a program and use it in
user dialogs.

Object Edit Goto Extras Environment System Help

1B 60 CHR DDaD ER

SAP R/3
BEE

© SAP AG 2002

(C) SAP AG BC410

3-2

Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

User Interfaces: Overview “’
PJ - -

© SAP AG 1999

Overview: GUI titles and GUI statuses
Creating a GUI status
Using a GUI status

(C) SAP AG

BC410

3-4

Overview: Interface

Object Edit Goto Extras Environment System Help a GUI Title
] 3l0@CEa LS D000 HE @B

SET TITLEBAR <n>.

SAPR/3
HEE

GUI Status
Menu bar SET PF-STATUS <n>.
Standard toolbar
User chooses
functions using
the mouse

© SAP AG 2002

A GUI status is made up of a menu bar, a standard toolbar, an application toolbar, and of function key
settings. Each screen can have one or more GUI statuses. For example, an editor program might have
two statuses: one for display mode and one for change mode.

The elements of a GUI status allow users to choose functions using the mouse.

Menus are control elements that allow the user to choose which functions will be processed by an
application program. Menus can also contain submenus. The System and Help menus are present on
every screen in the R/3 System. They always have identical functions and cannot be changed or hidden.
The application toolbar contains icons for frequently used functions. The standard toolbar, which is the
same on every screen in the R/3 System, contains a set of icons, each of which has a fixed assignment to
a corresponding function key. If a function in the standard toolbar is not available on the current screen,
the icon is grayed out.

The application toolbar allows the user to choose frequently used functions by clicking the
corresponding button.

You use the function key settings to assign functions such as Find, Replace, or Cut to the function keys.
All of a program’s GUI titles and statuses taken together make up its user interface. Whenever you add a
new title or status, you must regenerate the user interface.

(C) SAP AG BC410 3-5

GUI Title SAP

SET TITLEBAR 'TITLE' .
—7

Double-click

[= Create Object

[= Create Title

¥ Al title X

© SAP AG 2002

m There are three ways to create a title: from the object list in the Object Navigator, from the Menu
Painter, or by forward navigation from the ABAP Editor.

m The name of a title can be up to 20 characters long.
® You should set an appropriate title for each screen in your application.

B You can use variables in titles that are set dynamically at runtime by including the ampersand character
(&) as a placeholder. At runtime, the ampersand is replaced by a value that you specify. You can use up
to nine variables by placing digits after the ampersand.

To set a title that contains variables, use the statement:
SET TITLEBAR <title_name> WITH <&1> ... <&9>.

m A title bar remains in place until you set another one. At runtime, the system variable sy-title contains
the current title. Title bars are also known as GUI titles.

(C) SAP AG BC410 3-6

Status: Technical View (1)

Menu bars Key assignments Application toolbars

© SAP AG 1999

m From a technical point of view, a status is a reference to a menu bar, to certain key assignments, and to
an application toolbar.

m A single component (such as a menu bar) can be used by more than one GUI status.

m GUI statuses are ABAP program objects that can be displayed on screens and lists.

®m You should set a status for every screen in your application.

(C) SAP AG BC410 3-7

Status: Technical View (2)

i

Function Key Settings
Function key assignment | /Applicgtion toolbars Menu bar
[~ Standard toolbar / \ 4
Reserved function keys |¢— Menu list
[T Rec. function key settings _4|
[Freely assigned func. keysl g

INFO DETL

© SAP AG 2002

A menu bar is made up of individual menus.

Key assignments and application toolbars are subobjects of the function key settings.

You can create a set of application toolbars for a single key setting by choosing the menu path GUI-1.
Functions must be assigned to a function key before you can assign them to a pushbutton. Each status
contains a single application toolbar.

All program menus and key assignments refer to the set of all interface functions (function list). These
functions can be reached using F4 help. The application toolbar refers to the functions indirectly via the
standard settings.

A function within a status can be either active or inactive.

(C) SAP AG BC410 3-8

Status

Function attributes

Functions with Functions with
static texts dynamic texts

F code (== F code (==

F type F type

F text Field name

Icon name

Icon text ,

Info. text Meaning F type
Fastpath
e Normal _
Exit E
Function list System S

Transaction T
Tabstrip ctrl P
BACK Help request H

© SAP AG 2002

m Functions are identified by their function codes.

m The attribute function type determines the intended purpose of a function. Use the function types >’
(space), E, and P for pushbuttons, which you place on a screen using the Screen Painter, and for tab
titles. Function types S and H are reserved for internal use by the SAP System. Function type T indicates
a transaction code. When a function of this type is triggered, the system leaves the calling program and
calls the new program.

m Functions can be created with static texts or dynamic texts.

m [f a function has a static text, you can assign an icon to it (lcon name attribute). If the function is already
assigned to a pushbutton, an icon is displayed instead of the static text. The static text is used when you
assign the function to a menu entry. The function text belonging to the function is used as quick info
text. The contents of the Infotext attribute appear in the status bar of the screen when the user chooses
the function. If you want to display text as well as the icon, enter the text in the Icon text attribute.

®m You can use the Fastpath attribute to specify the letters that allow you to choose a function from the
menu bar without using the mouse.

m For further information, refer to the online documentation path in appendix reference GUI-2.

(C) SAP AG BC410 3-9

Function Key Settings H’
DA

Attributes: F key settings
Type of function key setting
® Screen
Dialog Box
Display characteristics in the
application toolbar

Function Key Settings

Function key assignment Application toolbars

[~ Standard toolbar /
Reserved function keys |{¢—

r
r D1
N |
Standard toolbar for
: Eics"tiens Can contain functions from
Reserved F keys for the standard settings
- Dialog box

- List in dialog box

© SAP AG 2002

m Functions can be assigned to individual function keys or buttons.

®m Function key settings consist of a key assignment and an application toolbar pushbutton.

m The type of function key settings (screen and dialog box) determines the exclusive technical purpose of
the function key setting. In addition, you can set options for the implementation of context menus and
input help on lists. For more information on using context menus in lists, see the Confext Menus unit
later in this course.

m Key assignments consist of reserved functions keys, recommended functions keys, and freely assigned
function keys. Reserved functions keys are function keys whose assigned values cannot be changed in the
SAP system. You may activate and deactivate their functions, but you cannot change the icons and texts
assigned to them. Reserved function keys appear in the standard toolbar on screens and lists.
Recommended function keys contain proposals, which comply with the SAP System’s ergonomic
standards.

m Functions that have been assigned to function keys can also be assigned to buttons in the application
toolbar.

®m An application toolbar can contain up to 35 buttons. You can insert vertical separators in the button bar
to group buttons visually. You can control the display of inactive functions in the application toolbar by
choosing Goto 2 Attributes = Pushbutton settings.

(C) SAP AG BC410 3-10

Menus and Menu Bars !’
SAF

Status

Menu bar attributes
- Short documentation

Menu bar

v

Menu list

Menu attributes

- Short documentation
Menu type
® With static text
- Menu text
- Fastpath
With dynamic text
- Field name
Include menu

© SAP AG 2002

A menu can contain up to 15 entries.

Possible entries are functions, separators, and menus (cascading menus).

Menus can be up to three levels deep. The third level may contain only functions and separators.
Menus can be created with static or dynamic text. If you want to use dynamic text, you must assign a
field to the menu. The contents of this field will be displayed as the menu text.

m The menu type Include menu allows you to reference menus in other programs. When you do this, you
must specify the name of the program and status from which you want to include the menu next to the
Short documentation field.

Include menus can be accessed only using the menu bar.

A menu bar can contain up to eight different menus. Up to six of these can be freely assigned. The
system automatically adds both the Sysfem menu and the Help menu to every menu bar.

(C) SAP AG BC410 3-11

Overview: GUI titles and GUI statuses

, Creating a GUI status

Using a GUI status

© SAP AG 2002

(C) SAP AG BC410 3-12

Creating a GUI Status W
>

—

SET PF-STATUS 'BASE'. —

Double-click

[= Create Object

[= Create Status

Status attributes
Short text

Status for flight

Status type e Online status

Dialog box
Context menu

v X

© SAP AG 2002

m The status type indicates the technical attributes of the status. You can choose between a dialog status
(status for fullscreen) or a dialog box status (for use with modal dialog boxes). Context menus are
special collections of functions that can be displayed with a right-click. We deal with them separately in
the Context Menus unit.

B You can create a status by creating links to existing components or by creating a new blank status. You
can also combine the two techniques. If you want to create an entirely new status, you must then create
your own menu bars, menu functions, and other elements. Changes to a status only affect that status.

® When you use the reference technique, you create menu bars, application toolbars, and function key
assignments as independent elements. You then create your own status and refer to the menu bar,
application toolbar, and any function key assignment you want. The Menu Painter stores and maintains
these references so that any changes in the menu bar, application toolbar, or function key assignments
automatically take effect in all statuses referring to them.

m The linking technique is particularly effective for ensuring consistency in very large applications that use
several statuses. The links ensure that the user can access functions in the same way whatever status is
set.

(C) SAP AG BC410 3-13

Standard toolbar/ Recommended
: function key settings
BASE
| Menu bar E‘\JZ; S ° Corresponding status type
|Application toolbar D\JZ; BASE * Adjust list functions
Function key U " BASE Freely assigned function keys
. I
H assignment i1 B * Enter F code, max. 20 characters

* Double-click to maintain attributes

Function attributes

Functions with Functions with
static texts dynamic texts
F code F code

F type F type

F text Field name
Icon name

Icon text

Info. text

Fastpath

© SAP AG 2002

m In a key setting, you assign individual functions to function keys and pushbuttons. Function key settings
consist of a key assignment and a set of application toolbars.

m Key settings can have various types (screen, dialog box, list, and list in dialog box).

B You can attach functions to reserved function keys, recommended function keys, and freely assigned
function keys. Make sure that they conform to the SAP System’s ergonomic standards, which can be
found in the Environment menu in the Menu Painter.

m Reserved function keys appear in the standard toolbar on screens and lists.

m If a function is important, and you have already assigned it to a function key, you can also assign it to a
pushbutton in the application toolbar. The application toolbar may contain up to 35 buttons.

(C) SAP AG BC410 3-14

Standard Toolbar: Automatic Assighments
Function key Meaning
& Enter
= Ctrl-S Save
& F3 Back
i Shift-F3 Exit (program)
& F12 Cancel (screen)
5 Ctrl-P Printing
i Ctrl-F Find
B Ctrl-G Find next
L Ctrl-Page up First page
Lk Page up Previous page
&0 Page down Next page
u] Ctrl-Page down Last page
) F1 Help
© SAP AG 2002

B When you assign a function to the standard toolbar it is also automatically assigned to a reserved
function key.

m To find out the function keys to which these functions are assigned in the current status, select the
Information in the Menu Painter.

®m For more information about how key combinations such as Ctrl-P are converted into internal function
key numbers (for example, for batch input), follow menu path GUI-3 in the Menu Painter.

(C) SAP AG BC410 3-15

Creating a GUI Status: Application Toolbar

Maintain Status
 Menubar BYEWE BASE
Application toolbar FYJE 05 BASE
- Functon ey IR 08 gasE |

© SAP AG 2002

B You can use a function in the application toolbar only if you have already assigned it to a function key.

m Use the F4 help to select functions.

m [f you assign an icon to a function with a static text (Icon name attribute), the system displays the icon
instead of the static text in the application toolbar. The function text belonging to the function is used as
quick info text. The contents of the Infotext attribute appear in the status bar of the screen when the user
chooses the function. If you want to display additional text with an icon, it should be entered in the Icon
text attribute.

m To insert a separator in the application toolbar, use the /nsert menu in the Menu Painter.

(C) SAP AG BC410 3-16

Creating a GUI Statu !’
DA

Maintain Status
| menubar BB VS BASE Menu bar attributes
Application toolbar D\JZ; BASE - Short documentation
Function key -
| assignment E' [BASE
Menu bar

° Display standards
° Maintain menus (<List>)

Menu attributes

- Short documentation
Menu type
With static text
- Menu text
- Fastpath
With dynamic text
- Field name
Include menu

© SAP AG 2002

® A menu entry can be a function, a separator, or another menu (cascading menu).

m To add a function to a menu, enter its function code in the left-hand column. If the function already
exists in the function list and has a text assigned to it, this is entered automatically in the text field. If not,
double-click the right-hand field to enter a text.

m To insert a separator, use the Insert menu, fill the function text field with minus signs at the appropriate
position or use the Context menu.

m To create a submenu, simply enter its name in the right field of the menu entry.

(C) SAP AG BC410 3-17

Displaying Standards H'
DA

Soloctifoserved lcon Function key Function code
function keys
& Enter
g F3 BACK
= L] F12 CANCEL
—

nu bar | Status_100 |

E.'I Display standards
|Objects | \Edit | \Goto | \ Extras | \Environ. | ‘ |

Application toolbar | Status_100 |
Function key n .
| assignment | Status_100 |

© SAP AG 2002

m To ensure consistency, you should reuse existing menu bars, application toolbars, and key settings
wherever possible. The Menu Painter administers the links you establish between these objects so that
any changes apply to all other statuses that use them. You can also use a set of standard menu entries as
a template and modify them.

® When you assign functions to the reserved function keys in the standard toolbar, you should adhere to
the SAP System standards. This makes your program easier for users to understand and for you to
maintain.

(C) SAP AG BC410 3-18

Including Existing Elements Hr
>

Maintain Status
* owber PRI BAsE
Application tootbar BYEWE BASE 11 B Bottom
 Functionfey JER @ case up

Function list

Objects that you
have already defined
are displayed and
you can select
one

Activate the required functions

Qo i
<O Function code

© SAP AG 2002

m Using the Menu Painter in a status, you can include key settings, application toolbars, or menu bars that
you have already defined elsewhere. If you do this, work from the bottom upward. If there is more than
one application toolbar defined for your key setting, you can choose the appropriate one.

m Initially, all functions are inactive. Activate only the functions that are relevant in the current status.

® When you create a new function, you can decide whether all statuses that refer to the same object should
also be changed. The new functions are initially inactive.

(C) SAP AG BC410 3-19

Using a GUI Status

Overview: GUI titles and GUI statuses

7
| | U
J=-
L]

Creating a GUI status

, Using a GUI status

© SAP AG 2002

(C) SAP AG BC410 3-20

Processing the Function Code H’
A

Screen
PROCESS AFTER INPUT. Painter

MODULE user_command 100.

Function key: F3 ABAP
Function code: BACK DATA:ok_code TYPE sy-ucomm.

Function type: o

B qﬂe CHE Ohao DR 08

SAPR/3

MODULE user command 100 INPUT.
CASE ok_code.
WHEN 'BACK'.
LEAVE TO SCREEN O.

ENDCASE.
General attriyés ENDMODULE .
Field name Type ... ?
.. The ok_code ABAP data
OK_CODE OK field still contains the old

function code after
processing

Screen Painter

Element list
© SAP AG 2002

® When the user triggers a function with type ’’using a button, menu entry, or function key, the system
places the relevant function code in the OK_CODE field of the screen.

m To allow you to process this field in the PAI event, you must assign a name to the field, which you then
enter in the element list in the Screen Painter. You must then create a field in your ABAP program with
the same name. During the automatic field transport at the beginning of the PAI event, the function code
is passed from the screen to the corresponding field in the program.

®m To avoid the function code leading to unexpected processing steps on the next screen (enter does not
usually change the command field), you should initialize the identically named ABAP field. The initial
value is then automatically transported to the corresponding command field at PBO.

(C) SAP AG BC410 3-21

Alternatives for Command Field Processing

PBO

PROCESS BEFORE OUTPUT.

b!, :l I'
Screen
Painter

PAI

PROCESS AFTER INPUT.

or
Screen
Painter

MODULE save_ok_code.
MODULE user_command 0100.

ABAP
DATA:o0k_code TYPE sy-ucomm,

save ok LIKE ok_codef

MODULE save ok code [Rsp=spy.

save_ok = ok_codef

CLEAR ok_code.
ENDMODULE .

MODULE clear ok code.

ABAP
DATA:ok_code TYPE sy-ucomm.

MODULE clear ok_code [olosg=iopy.
CLEAR ok_code.
ENDMODULE .

MODULE user command 100 INPUT. MODULE user command 100 INPUT.

S ok_codel
WHEN 'BACK'.
LEAVE TO SCREEN O.
ENDCASE .
ENDMODULE .

case FRNEY

WHEN 'BACK'.
LEAVE TO SCREEN O.
ENDCASE .
ENDMODULE .

® You can initialize the command field at PAI or at PBO.

m The simplest method is to insert a module at the end of PBO in which the identically named ABAP field
is initialized. The automatic data transport initializes the command field.

® Another method is to copy the OK_CODE field explicitly to a field of similar type, and then to initialize
it.

m Note: You cannot combine the two methods. If you do this, errors may occur in the processing of the
screens that initialize the OK_CODE field at PAI

(C) SAP AG BC410 3-22

User Interfaces: Unit Summary H'
SAF

. You are now able to:

® Create a user interface for a program and use it in
user dialogs.

© SAP AG 2002

(C) SAP AG BC410 3-23

Exercises

\ Unit : The Program Interface

Topic: Creating a GUI status and using it with a screen

*e®

At the conclusion of these exercises, you will be able to:

¢ (Create online statuses and use them in your programs.

/

Use Menu Painter to create GUI Status and GUI Title.

Y,

I-1

1-3

1-4

1-5

Create a GUI Title and a GUI Status for a screen.

Extend your program SAPMZ##BC410_SOLUTION from the previous exercise (or
copy the model solution SAPMBC410ADIAS_DYNPRO). You can use the model
solution SAPMBC410ADIAS_GUI for orientation.

In the PBO event of screen 100, call a module status_0100. Use forward navigation to
create the module in a new include. Accept the system’s proposal for the name
(MZ##BC410_SOLUTIONOO1). In this module, set the GUI status STATUS_100
and GUTI title TITLE_100 (Flight data). You can create the status and title by forward
navigation.

Choose Online status for the Status type and Maintenance screen for Short text.
Activate the standard function BACK (F3) with the function type ‘ ’ (space).

Assign the name OK_CODE to the function code field on your screen, and create a
corresponding variable in the top include of your program.

Implement the command field processing. Use forward navigation to create the PAI
modules in a new include. Accept the system’s proposal for the name
(MZ##BC410_SOLUTIONIO1). Ensure that the user returns from screen 100 to the
point from which it was called if he or she chooses BACK (F3) only.

To avoid unnecessary navigation, initialize the command field in a module at the PBO
event of the screen.

(C) SAP AG

BC410 3-24

Solution SAPMBC410ADIAS GUI

Main program

INCLUDE MBC410ADIAS_GUITOP.
INCLUDE MBC410ADIAS_GUIIOI.

INCLUDE MBC410ADIAS GUIOO1.

Flow logic for screen 100

PROCESS BEFORE OUTPUT.
MODULE status_0100.
MODULE clear ok_code.

*

PROCESS AFTER INPUT.

MODULE user_command_0100.

Top include

PROGRAM sapmbc4lOadias_gui.

DATA ok_code TYPE sy-ucomm.

/ Unit 3: The Program Interface

Topic: Creating a GUI status and using it with a screen

Solutions

(C) SAP AG BC410

3-25

PAI module include

MODULE user_command_0100 INPUT.
CASE ok_code.
WHEN ’'BACK' .
LEAVE TO SCREEN O.

ENDCASE.
ENDMODULE . " user_command_0100

PBO module include

MODULE status 0100 OUTPUT.
SET PF-STATUS 'STATUS_lOO'.
SET TITLEBAR 'TITLE_lOO'.

ENDMODULE . " status_0100 OUTPUT

MODULE clear_ ok_code OUTPUT.
CLEAR ok_code.

INPUT

ENDMODULE . " clear ok code OUTPUT

(C) SAP AG BC410

3-26

Screen Elements for Output HV
A

Contents:

® Text fields
® Statusicons

® Group boxes

© SAP AG 1999

(C) SAP AG BC410

Screen Elements for Output: Unit Objectives

At the conclusion of this unit, you will be able to:

® Create and change text fields, status icons, and
group boxes.

Status

Occupancy:

OOOl 22%

© SAP AG 2002

(C) SAP AG BC410

4-2

Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

Output Elements: Text Fields Hr
>

, Text fields

© SAP AG 1999

(C) SAP AG BC410

4-4

Displaying static
texts

® Multilingual

© SAP AG 2002

A text field is a rectangular area on a screen in which the system displays text.

Text fields contain labels for other elements. These labels (sometimes called keywords) are purely for
display. The user cannot change these labels at run time. Text fields are displayed in a fixed position on
the screen.

Text fields can also contain lines, icons, and other static elements. They can contain any alphanumeric
characters, but may not begin with an underscore (_) or a question mark (?). If you use text to label a
radio button or check box, you can specify whether the label is to have a Left button or a Right button.
If your text consists of more than one word, use underscore characters as separators. This enables the
system to recognize that the different words in fact belong together. The system interprets spaces as
separators between two different text fields.

Text fields can be translated. They then appear in the user’s logon language. To do this, follow the menu
path under OUT-1.

(C) SAP AG BC410 4-5

Text Field: Attributes F'
SAF

Attributes
I
[| | |
General Dictionary Program Display

e Name e From ABAP e Output options o Fixed font
e Text Dictionary - right-justified °
e Icon display o

- lcon name e As a label

- Quickinfo - left/right
e Start position e Reacts to
e Size ' double-click

- Statllci _ e Web display
e Modification properties

groups

e Context menu

© SAP AG 2002

m At run time, you can change the size (visible length) of a text field and the display attributes Bright and
Invisible. To do this, use the SCREEN-LENGTH, SCREEN-INTENSIFIED, and SCREEN-INVISIBLE
(or SCREEN-ACTIVE) fields.

(C) SAP AG BC410 4-6

Creating Text Fields

Screen Painter
Layout Editor

ABAP Dictionary

Texts
Field name

Short Text

Medium Longer_text

Long Much_longer_text

© SAP AG 2002

B You can create text fields in either of the following ways:
* Directly in the layout editor, by placing a text field object in the work area and entering the text in the
Text attribute.
* By using the accompanying text of a data element from the ABAP Dictionary.
® When you use fields from ABAP Dictionary structures on the screen, the system normally displays the
data element and the template for the input/output fields on the screen.

(C) SAP AG BC410 4-7

Use SAP Partner Only

Internal

Hiding a Text Field Dynamically SAP

Name of text field: textfield1

© SAP AG 2002

B You can make text fields invisible at run time.
m If you make an element invisible that is enclosed in a box, the box is not displayed either.

(C) SAP AG BC410 4-8

laujied JVS 9SN |euiajulj

Ajug

Object name

SCREEN-GROUP1
SCREEN-GROUP2
SCREEN-GROUP3
SCREEN-GROUP4

Modification group 1
Modification group 2
Modification group 3
Modification group 4

SCREEN-REQUIRED
SCREEN-INPUT

Required entry

Ready for input

SCREEN-OUTPUT Ready for output
SCREEN-INTENSIFIED Intensified
SCREEN-INVISIBLE Invisible

SCREEN-DISPLAY_3D
SCREEN-VALUE_HELP
SCREEN-REQUEST

Display object in 3D

Field with value help

|

|

|

|

|
SCREEN-LENGTH | Object length

|

|

|

‘ Input exists (only in PAI)

© SAP AG 2002

® When the PBO module is processed, the system table with the line type SCREEN is initialized by the
runtime environment, and filled with the static attributes from the Screen Painter.

m To hide a text field at run time, you modify the system table. Use LOOP AT SCREEN. ... MODIFY
SCREEN. ENDLOOP.

m To make a text field invisible, use SCREEN-INVISIBLE = 1 or SCREEN-ACTIVE = 0.

(C) SAP AG BC410 4-9

Dynamic Screen Modifications: Program

PROCESS BEFORE OUTPUT.

MODULE modify screen.

MODULE modify screen OUTPUT. ABAP

LOOP AT SCREEN.
IF screen-name = .
screen-active = n
ENDIF.
ENDLOOP.
ENDMODULE .

© SAP AG 2002

m To dynamically hide the TEXTFIELDI field, you can call a module in the PROCESS BEFORE
OUTPUT processing block that sets the invisible attribute for that field.

®m To do this, set the contents of the SCREEN-ACTIVE field to 0.

m Note: SCREEN is a system internal table. The system does not support the statements LOOP AT
SCREEN WHERE... and READ TABLE SCREEN.

(C) SAP AG BC410 4-10

Output Elements: Status Icons

Text fields

Group boxes

© SAP AG 1999

(C) SAP AG BC410 4-11

Flight Status

Status Displaying
icons

International

Long haul ® Icon selection at
runtime (dynamic icons)

® Graphical elements improve
screen layout

Conditions:

countryfr NE countryto

distance GE 1000

© SAP AG 2002

m A status icon is an output field that contains an icon. You choose the relevant icon at run time. Icons
allow you to indicate a status in your application. They are predefined in the system, and take up
between two and four characters.

m For information about the available icons, see the online documentation (reference OUT-2).

(C) SAP AG BC410 4-12

Status Icons: Attributes

General Attributes
|

‘ General ‘ Dictionary ‘ Program ‘ Display

e Name e Upper/lowercase e Dialog behavior ¢ Fixed font

e Text active °

o - Output only °

e Start position * ?I:it‘:‘l:_t_l:%tf'izzs e Reacts to

e Size gt double-click
- Static e Web display

properties

e Modif. groups
e Context menu

© SAP AG 2002

m Status icons are special output fields that display icons. The system sets the attributes Qutput field and 2
dimensional, which cannot be changed. The default data format is CHAR.
®m You can change the Visible length, Intensified, and Invisible attributes of a status icon dynamically.

(C) SAP AG BC410 4-13

Creating Status Icons

Screen Painter
Layout Editor

Element attributes

Status

Internagional 0

| 132]

ABAP

khkkkkkkkkkhkkkkkkkkkkkhkkkhkhkkkkkkk

* INCLUDE xxxTOP *
khkhkhkkkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkkkhkhkkkhkhkdx

1):VW-Sl iconfieldl TYPE icons-text.

© SAP AG 2002

B You can only define a status field in the graphical layout editor. A status field is an output field with an
icon. You use it to display an icon, which you specify dynamically at run time.

m To ensure that you can display the Quick info that might be longer, define the field with defined length
of 132 and visible length two.

m In the ABAP program, define a field with the same name as the screen field using the TEXT field from
the ICONS structure. At run time, this field contains the name of the icon you want to display.

® At run time, assign the required icon to this field using the ICON_CREATE function module.

(C) SAP AG BC410 4-14

Use SAP Partner Only

Internal

Filling a Status Icon

PBO.
MODULE set_icon.

300

Status

International

Long haul

© SAP AG 2002

B You select the icon you want to display from the ABAP program. Before the screen is displayed, you
need to find out the technical name of the icon. You do this by calling a module in the PBO event.

B You retrieve the technical name of an icon using the ICON_CREATE function module. You must pass
the name of the icon you want to display to the function module. You can also pass a text to be displayed
with the icon. The function module returns the technical name of the icon.

m For further details about this function module, refer to its documentation.

(C) SAP AG BC410 4-15

1dujied dVS 9SS |euiaju]

Ajugp

Output Elements: Group Boxes

Text fields

, Group boxes

© SAP AG 1999

(C) SAP AG BC410 4-16

Group Boxes

Group box header Graphical
element

Field group

| Field 1
| Field 2

| Field 3

® Visual bundling of objects
on the screen

® Graphical elements improve
screen layout

Group boxes

© SAP AG 2002

m Group boxes enclose a selection of elements that belong together (for example, a group of fields or a
radio button group). They are purely display elements, which help the user to identify which elements on
the screen belong together in a group.

B You can use group boxes to make sure that all fields within a box have the same context menu assigned
to them. For further information, refer to the Context Menus unit.

m Group boxes can have a title.

(C) SAP AG BC410 4-17

Group Boxes: Attributes

Attributes
I
I I I I
I General I Dictionary I Program I Display
e Name e From ABAP e Dialog behavior °
° Dictionary
e Start position
e Size
- Static

e Modif. groups
e Context menu

© SAP AG 2002

B You can change the Visible length and Invisible attributes using the SCREEN system table.

®m A group box may contain other screen elements.

®m At run time, if the box contains only invisible elements and the screen attribute Runtime compression is
set, the box itself is not displayed.

(C) SAP AG BC410 4-18

Creating Group Boxes

Screen Painter
Layout Editor

Element attributes

[frame1 |

© SAP AG 2002

®m You define a group box in the layout editor. The object must have a name; you may also assign a
heading to the box.

®m You can change the group box text dynamically. To do this, you should activate the output field attribute
and create a global data field in the ABAP program with the same name. Because the Screen Painter
field and the program field have the same name, any changes to the field contents will be immediately
visible on the screen (similarly to input/output fields).

(C) SAP AG BC410 4-19

Screen Elements for Output: Unit Summary H’
DA

. You are now able to:

® Create and change text fields, status icons, and
group boxes.

© SAP AG 2002

® The main purpose of output elements is to make your screens clearer.

m Text fields allow you to add labels to input and output fields. Make sure the text field and the
input/output field have the same name. If you deactivate an input/output field, the system automatically
hides the text field associated with it.

m Status icons are an excellent way of presenting information so the user can grasp it at a glance.

m Group boxes group fields that belong together logically. Runtime compression ensures that empty group
boxes are hidden.

m Static texts on the screen can be translated. They then appear in the user’s logon language. To make
dynamically assigned texts available in several languages, use ABAP program text elements.

(C) SAP AG BC410 4-20

Screen Elements for Input/Output HV
DAY

Contents:

Input/output fields
Input help

Checkboxes and radio button groups

Pushbuttons

© SAP AG 1999

(C) SAP AG BC410

5-1

Unit Objectives W
LA

At the conclusion of this unit, you will be able to:

® Use input/output fields, checkboxes, radio button
groups, and pushbuttons in your programs.

o Selection 1
Selection 2
Selection 3

v Option 1
Option 2

© SAP AG 2002

(C) SAP AG BC410

5-2

Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

Input/Output Elements: Input/Output Fields H’

, Input/output fields

Checkboxes and radio button groups

© SAP AG 1999

(C) SAP AG BC410 5-4

Input/Output Fields H'
DA

Displaying and receiving data
at the front end

® Automatic field input checks

® Data consistency checks
(check table)

® Input helps

\4

PROGRAM sapmzxXxx. ‘

© SAP AG 2002

An input field is a rectangular screen element in which users enter data.

An output field is a rectangular screen element in which the system displays text or other data.
Input/output fields are also known as templates.

Input fields may have automatic field input checks that relate to their data type (for example, date fields
will allow you to enter a valid date only).

Input fields that you create with reference to ABAP Dictionary fields may have built-in data consistency
checks (foreign key checks, and value sets).

Input fields may have possible values help.

For further information about input/output fields, see the online documentation, INP-1.

(C) SAP AG BC410 5-5

Input/Output Fields: Attributes ..!' '
e
Attributes
I
I I I I
I General I Dictionary I Program I Display
e Name e Data format e Dialog behavior ¢ Fixed font
e Text e Memory ID °
e Dropdown - ID name o
e Icon display - ZEIT' attttrI'It))Utte peL °
. - attribute
Icop name o Foreian ke e Input help e Reacts to
- Quickinfo g y - double-click
e Start position check - Wi wio input help lob disnla
L[- Input help button @ Web display
o Size Ol AL e Output options properties
- Static DIBIENEL ~Right justified
e Conversion exit i LegdilI zeros
o Scrollable o Search help « Input options
e Modif. groups e Upper/lowercase - * input possible
e Context menu active - W/O reset
- Without template
© SAP AG 2002

B You can temporarily change the object attributes marked in gray using the SCREEN system table.

m [t may not be possible to activate all possible combinations of attributes. This depends on the format of
the input/output field. For example, you cannot activate the Leading zeros attribute for a field with the
data format CHAR, since it is only relevant for numeric fields.

m For further information about the Data format attribute, refer to the online documentation (reference
INP-2).

(C) SAP AG BC410 5-6

Creating Input/Output Fields Hr
>

Screen Painter ABAP Dictionary

Layout Editor Structure: SDYN _CONN
Field name Type Length
|caRrRID [cHAR [3

Element Attributes [connp [NUmC [4
3

v

ABAP

khkkkkkkkkkkkkkikkkkkkkkkkkxkx
*

© SAP AG 2002

B You can create input/output fields in two ways:

* By entering them directly in the layout editor. You determine the size of the field by the number of
underscore characters in the object text attribute. For numeric values, you can specify a comma as a
separator, and a period as a decimal point. As the last character in the input/output field, you can enter
V as a placeholder for a plus or minus sign.

* By using a template from the ABAP Dictionary. To do this, choose Dict/Program fields.

m If you want to use the contents of an input/output field in your ABAP program, you must declare the
field globally using the DATA or TABLES statement.

(C) SAP AG BC410 5-7

Use SAP Partner Only

Internal

Default Values in SAP Memory SAP

CAR LH
CON 0400

© SAP AG 2002

B You can save values in the SAP memory using a parameter ID. These are user and terminal-session
specific, but available to all internal and external sessions.

m SET Parameter copies the corresponding field contents into the SAP System memory in the PAI
processing block.

m GET Parameter copies the corresponding field contents from the SAP memory at the end of the PBO
processing block (after data has been transferred from the program), if the screen field still has its initial
value.

(C) SAP AG BC410 5-8

laujied JVS 9SN |euiajulj

Ajug

Defining SET and GET Parameter Attributes H’
DA

ABAP
Data element Dictionary

Data element |S_CARR_ID

Parameter ID |[CAR C(Carrier ID

Screen
Painter

List of general element attributes
SPA GPA PID
SDYN_CONN-CARRID X X CAR

SDYN_CONN-CONNID X X CON

© SAP AG 2002

B You can link an input/output field to an area of the SAP memory in the ABAP Dictionary.

® When you use an input/output field that is defined in the ABAP Dictionary, its parameter ID is displayed
in the Dictionary attribute Parameter ID in the Screen Painter.

m The SET Parameter and GET Parameter attributes (SPA and GPA in the table) allow you to enable the
SET and GET parameter functions separately.

B You can define parameter IDs in table TPARA.

(C) SAP AG BC410 5-9

Automatic Field Input Checks

Mandatory fields check DES

Field format check oATS

Fixed values

Domain: Fixed values

\
Foreign key check
\~A Field: Check table

© SAP AG 2002

m After the screen is displayed but before the PAI modules are processed, the system automatically checks
the values the user enters on the screen.

m The first check is to ensure that all required fields have been filled.

®m The system can perform a foreign key check only if a screen field refers back to an ABAP Dictionary
field for which a check table has been defined. The foreign key check attribute must also be set.

m The F4 help function is also active. The system displays the possible entries from which the user can
choose.

(C) SAP AG BC410 5-10

Use SAP Partner Only

Internmal

Field Input Checks with Error Dialog

Screen

PROCESS AFTER INPUT. Painter
@8Ny <Field name> MODULE check input INPUT.

check_input. .

ENDMODULE .

© SAP AG 2002

m If the automatic field input checks are insufficient for your requirements, you can program your own in
the PAI event. To do this, use the FIELD statement with the MODULE addition. This means that the
module you specify is processed only for the field specified in the FIELD statement.

m If an error or warning message occurs during the module, the system sends the screen again, but without
processing the PBO module. The message is displayed; only the field to which the check was applied is
ready for input.

m Note: The FIELD statement is responsible for making the field ready for input again. If you use a
message in a module that is not called from within a FIELD statement, the system displays the message,
but does not make the field ready for input again.

(C) SAP AG BC410 5-11

1aujie g JVYS 9SN |euiaju]

Ajug

Use SAP Partner Only

Internal

Checking Groups of Fields

Screen
PROCESS AFTER INPUT. il

CHAIN.
I8N <Field name 1>,

<Field name 2>,

<Field name n>.
uenlipnf check input.
ENDCHAIN.

MESSAGE E

© SAP AG 2002

m If you want to ensure that more than one field is ready for input following an error dialog, you must list
all of the relevant fields in the FIELD statement, and include both that and the MODULE statement in a

CHAIN ... ENDCHAIN block.

B You can include individual fields in more than one CHAIN ... ENDCHAIN block.
m Note that the FIELD statement does not only make the field ready for input again. It also means that

field contents changed during the current PAI processing are visible only if the field in question was also
included in the FIELD statement of the current CHAIN block.

(C) SAP AG

BC410

laujied JVS 9SMN |euiajul]

Ajug

Controlling Error Dialogs H’
SAF

Screen
Painter
PROCESS AFTER INPUT.

FIELD A MODULE check A.
% F1ELD [MODULE check B.

CHAIN.
== FIELD: [§,D. ABAP

L 2AREA G20 S (B0)o MODULE check CB INPUT.
ENDCHAIN. : =
CHAIN. .

FIELD: [MESSAGE E [JNNH

MODULE check CB. ENDMODULE .
ENDCHAIN.

Al O
2 B[l | «

—3 I —
o[

'E..Message | | | | |

0 Ready for input again

2 Resume here if B changed

3 Resume here if C changed

© SAP AG 2002

If the system sends an error or warning message, the current screen is sent again but the PBO is not
processed again.

Only the fields to which the module is assigned are ready for input again.

After the user has entered new values, the PROCESS AFTER INPUT module is not completely
reprocessed, but restarted somewhere within the processing block.

The system finds out which field the user changed and resumes processing at the first corresponding
FIELD statement.

If the user merely confirms a warning message (without changing the field’s contents), the system
restarts the PAI processing after the MESSAGE statement where the error was triggered.

(C) SAP AG BC410 5-13

Dialog Message Categories F'
VA

© SAP AG 2002

Termination Error Warning Information gyccess
Program
call Screen 100 - Screen 100 o Screen 100 Screen 100
¢ £)
=])
v g | 2
= ; o
S 100 S »
ereen ks E message .g W message K] | message
Q -
2 T =
; o
3 3
A message Z 4
X message v v
Screen 200
Screen 100 Screen 200 S message

B Messages are divided into six categories: A, X, E, W, I, and S. The differences between each class
are as follows:

A

X
E
W

Termination
Exit

Error
Warning

Information

Success

The processing terminates and the user must restart the transaction.

Like message type A, but with short dump MESSAGE_TYPE_X.
Processing is interrupted, and the user must correct the entry

Processing is interrupted and the user can correct the entries (works like an
Error message). However, it is also possible to confirm the existing entries
by selecting Enter (works like an I message).

Processing is interrupted, but continues when the user has confirmed the
message (by selecting Enter).

Information is displayed on the next screen.

(C) SAP AG

BC410 5-14

The FIELD Statement and Data Transport

Screen

Painter
PROCESS AFTER INPUT.

MODULE
FIELD [\ MODULE
FIELD 5 MODULE
MODULE

Data transport for all
fields except A and B
from the screen into the
ABAP program

| Execute module first

| & Data transport for A
| Execute module check_ A

| o Data transport for B

| Execute module check B
| Execute module last

'O O W

ABAP

Screen

S
e
d
u
e
n
C
S

© SAP AG 2002

m The system transports data from screen fields into the ABAP fields with the same name in the PAI
processing block. First, it transports all fields that are not contained in any FIELD statements. The
remaining fields are transported when the system processed the relevant FIELD statement.

m If an error or warning message occurs in a module belonging to a FIELD statement, the current values of
all fields in the same CHAIN structure are automatically transported back into their corresponding
screen fields.

(C) SAP AG BC410 5-15

Conditional Module Calls

® How can | avoid unnecessary field checks?

® How can | leave the screen without any automatic field
checks?

® How can | avoid data loss when the user navigates?

© SAP AG 2002

m Field input checks usually require access to the database. Avoiding them where possible improves the
performance of your program.

m [f the user has strayed onto the screen by mistake, he or she are not usually able to make a consistent set
of entries that will satisfy the input checks. You should therefore make it possible for a user to leave a
screen without the field checks taking place.

m To protect the user from losing data that he or she has already entered if they leave the screen
unintentionally, program security prompts.

(C) SAP AG BC410 5-16

Execution on Input

Screen
PROCESS AFTER INPUT. Painter
FIELD <Field name>
MODULE <module>o BEsizepd

Screen
PROCESS AFTER INPUT. Painter

Called when
field contents

are not equal

CHAIN. to initial value
FIELD: <Field name 1>,

<Field name 2>,

<Field name n>.

MODULE <module>fe\jei:runihgijduyy

ENDCHAIN.

© SAP AG 2002

m If you use the ON INPUT addition in a MODULE statement after FIELD, the module is called only if
the field contents have changed from their initial value.

® Within a CHAIN block, you must use the ON CHAIN-INPUT addition. The module is then called if the
contents of at least one screen field within the CHAIN block have changed from their initial value.

B You may use the ON INPUT addition only if the MODULE statement is contained in a FIELD
statement.

(C) SAP AG BC410 5-17

Execution on Change

Screen
PROCESS AFTER INPUT. Painter
FIELD <Field name>

MODULE <module eI lelt - hy

Execution when

—— Input Is new
PROCESS AFTER INPUT. Painter

CHAIN.
FIELD: <Field name 1>,
<Field name 2>,

<Field name n>.

MODULE <module>{e) ie:r:unfain{e]s)rshi

ENDCHAIN.

© SAP AG 2002

m If you use the ON REQUEST addition in a MODULE statement after FIELD, the module is called only
if the user enters a new value in that field.

® Within a CHAIN block, you must use the ON CHAIN-REQUEST addition. The module is then called if
the user changes the contents of at least one screen field within the CHAIN block.

B You may use the ON REQUEST addition only if the MODULE statement is contained in a FIELD
statement.

(C) SAP AG BC410 5-18

Avoiding Field Input Checks

Screen

Painter

PROCESS AFTER INPUT.

MODULE exit YR obasilele)lilr sl

Execution when

function has

MODULE exit INPUT.
WHEN 'CANCEL'. e
CLEAR ok_code.
LEAVE TO SCREEN 0.
WHEN 'EXIT'. @
LEAVE PROGRAM.
ENDCASE .
ENDMODULE . " EXIT INPUT

© SAP AG 2002

® The module with the AT EXIT-COMMAND addition is processed before the automatic field input
checks. You can use it for navigation. You may use the AT EXIT-COMMAND addition with only one
module for each screen. It may not have an associated FIELD statement.

m If you do not leave the screen from this module, the automatic field checks are processed after it,
followed by the rest of the PAI event.

(C) SAP AG BC410 5-19

Navigation: Targets

Calling
program

=

T I |
Coe Coe eoe

B @ —> Maintenance— @ — Maintenance
-[)—| screen1 |«—[3j—| screen2

Initial
screen

{1

Coe

Details

© SAP AG 2002

The Back and Cancel functions should lead one logical level backward. From screens on the same level
as the initial screen, they lead back to the initial screen. From screens that contain detailed information,
they lead back to the screen that called the current screen.

The Cancel function differs from Back in its dialog behavior.

The Exit function should return to where the processing unit was called.

On the initial screen of a program, all three functions -(Back, Exit, and Cancel) lead back to the screen
from which the current program was called.

For further information, see the online documentation, INP-3.

(C) SAP AG BC410 5-20

Navigation: Single-Screen Transaction

Calling
program

l

¢ Initialize fields
* Allow new fields

© SAP AG 2002

B Back exits the current transaction and returns to the calling program (for example, the Workplace). The
function works like Exit.

m FExit exits the current transaction and returns to the calling program (for example, the Workplace).
m The Exit and Back functions are different in terms of their dialog behavior to prevent losing input data.

m Cancel displays the screen again with initialized data fields and allows the user to select a new object.

(C) SAP AG BC410 5-21

Navigation: Dialogs
Back e
Change Session® | Exit & | cancel L5
Saves dialog Yes Yes No
Checks entries Yes Yes No
Check, First
Sequence then save dialo save dialog, -
9 then check
Function type Y E E
Unsaved data will
? ?
Example Save data” Save data“ be lost: cancel?

. t t t
Function module poP:‘.’— o—t poP;?— °— poP:‘.’— °—
for dialog confirm step confirm step confirm

loss _of data
© SAP AG 2002

m [f the user has entered data on the screen (sy-datar = X or your own flag), you can avoid accidental loss
of data by using a predefined security prompt.

m For the Exit and Cancel functions, you first send a dialog box to the user. Then (in the case of the Exit
function), the system checks the input on the screen. The functions in question must be function type E.

m In the case of the Back function, the input checks come before the dialog.

m Note that unsaved data may also be lost, for example, when switching from Change to Display mode. If
the user chooses not to save, the system will display the original data stored in the database.

m The R/3 System contains a series of function modules that you can use for the user dialogs. Flow logic
diagrams for the implementation of the individual functions are included in the appendix.

m For further information, see the online documentation, INP-4.

(C) SAP AG BC410 5-22

Input/Output Elements: Input Help

Input/output fields

Checkboxes and radio button groups

© SAP AG 1999

(C) SAP AG BC410 5-23

Lufthansa

Lauda Air
Delta Airlines

09.09.2002 [

© SAP AG 2002

B You can help the user with input by using dropdown list boxes containing the possible entries.

m Input help (F4 help) is a standard function in the R/3 System. It allows the user to display a list of
possible entries for a screen field. If the field is ready for input, the user can place a value in it by
selecting it from the list.

m If a field has input help, the possible entries button appears on its right. The button is visible whenever
the cursor is placed in the field. You can start the help either by clicking the button or by pressing the F4
key.

m In addition to the possible entries, the input help displays relevant additional information about the
entries. This is especially useful when the field requires a formal key.

m Since the input help is a standard function, it should have the same appearance and behavior throughout
the system. Utilities in the ABAP Workbench allow you to assign standardized input help to a screen
field.

m The precise description of the input help of a field usually arises from its semantics. Consequently, input
help is usually defined in the ABAP Dictionary.

(C) SAP AG BC410 5-24

Dropdown Boxes W
SAP

Screen Painter

ABAP Dictionary

Layout Editor Structure: SDYN_CONN
Field name Input help
| CARRID |[... using check table
General Attributes
-
SCARR

List box

Carrname

Program Attributes

O
)
3
O

© SAP AG 2002

® Dropdown boxes allow the user to choose an entry from a pull-down list containing the possible entries.
The user cannot enter values freely, but must choose a value from the list.

m To create a dropdown box for an input field, you must do the following in the Screen Painter:

Set the Dropdown attribute to List box.

Change the Visible Length attribute to the displayed length of the descriptive text.

Set the Value list attribute to *’to use value help from the ABAP Dictionary.

If required, set the function code for the selection. Like a menu entry, this function code triggers the
PAI; you can interpret the function code using the OK_CODE field.

m Important: The visible length of the field determines the width of the field (including the button) and
the selection list. You must change the width of the field when you convert the field to a dropdown box.

m The values are filled automatically using the search help assigned to the ABAP Dictionary field. The
ABAP Dictionary field must have a search help (check table) with two columns or a table of fixed
values.

(C) SAP AG BC410 5-25

Input/Output Elements: Checkboxes and Radio

Button Groups
Input/output fields

Checkboxes and radio button groups

© SAP AG 2001

(C) SAP AG BC410 5-26

Checkboxes and Radio Button Groups

User chooses
Radio button group functions using
the mouse

® Option A
Option B
Option C

® Simple display of all
Checkbox possible options
v Option 1
Option 2
Option 3

© SAP AG 2002

m Use radio buttons when you want to allow a user to choose only a single element from a group of fields.

m Use checkboxes when you want to allow the user to choose one or more elements from a group of fields.

m With radio buttons, one selection rules out all other options within the group. When the user selects one,
all of the others are automatically deselected.

(C) SAP AG BC410 5-27

Radio Buttons and Checkboxes: Attributes H’
SAF

Attributes
|
| | [|
General Dictionary Program Display

e Name e Data format e Dialog behavior e
e Text e Memory ID
e Icon display - ID name

- lcon name - SET attribute

- Quickinfo - GET attribute
o Start position =~ ® From ABAP
e Size Dictionary

- Static

e Scrollable

e Modif. groups
e Function code
e Function type

© SAP AG 2002

B You must attach a name to checkboxes and radio buttons.

m In addition to the input/output field, you can display text and icons for them. The text is contained in the
Text field in the attributes. To display an icon, enter its name in the Icon name attribute. A quick info for
the icon then appears in the appropriate field.

® You can change the Input field and Invisible attributes dynamically using the SCREEN system table.

(C) SAP AG BC410 5-28

Creating a Checkbox

Screen Painter
Layout Editor

Element Attributes

© SAP AG 2002

B You create checkboxes in the fullscreen editor of the Screen Painter. To do this, choose the checkbox
object from the object list and place it on the screen. You must assign a name to each checkbox. In the
ABAP program, create a field with the same name, type C, and length one.

B You can find out whether a user has chosen a checkbox in the ABAP program by querying the field
contents. If a checkbox is not selected, its field value is initial.

®m You can assign a function code and function type to a checkbox. When the user selects it, the PAI event
is triggered and the function code is placed in the command field (that is, the OK_CODE field).

(C) SAP AG BC410 5-29

Creating a Radio Button Group

Screen Painter
Layout Editor

Element Attributes

o Create radio button
e Define radio button group

ABAP

© SAP AG 2002

B You create checkboxes in the layout editor of the Screen Painter. There are two steps involved:
* Create the radio buttons as individual elements. Choose radio button from the object list and place it
on the screen. You must assign a name to each radio button. In the ABAP program, create a field with
the same name, type C, and length one. To make your programs easier to read and maintain, create a
structure associated with each radio button group.
* You can also combine a collection of radio buttons into a radio button group. To do this, select the
radio buttons in the layout editor and then choose Edit = Group = Radio button group = Define.
® You can find out which radio button a user has chosen by querying the field contents in the ABAP
program. If a radio button is not selected, the field value is initial.
B You can assign a function code and function type to a radio button group. When the user selects one of
the radio buttons, the PAI event is triggered and the function code is placed in the command field (that
is, the OK_CODE field).

(C) SAP AG BC410 5-30

Use SAP Partner Only

Internmal

Program Flow for Radio Buttons and Checkboxes

Element List

ok_code

© SAP AG 2002

—> PROCESS AFTER INPUT.

Screen
Painter

MODULE user_ command 100.

m Depending on whether or not you have assigned a function code to a checkbox or radio button, when
you select the field the system either triggers or does not trigger a PAI event.

B You can assign a function code to a radio button after you have defined a radio button group. The system

then assigns the same function code to all radio buttons of the group.

(C) SAP AG BC410

5-31

l1aujied dVS 2SN |euiaju]

Ajug

Input/Output Elements: Pushbuttons

Input/output fields

Checkboxes and radio button groups

© SAP AG 1999

(C) SAP AG BC410 5-32

User input using
the mouse

® User-determined program
flow

@ Functions that relate to
individual screen elements
or groups of screen elements

© SAP AG 2002

m Pushbuttons are input fields for the command field (that is, the OK_CODE field).

m Using the mouse, users can quickly access functions that relate to individual screen elements or groups
of screen elements.

m Use pushbuttons in the data area of your screen to show or hide further information.

m If a pushbutton relates to a single field or a small group of fields, make sure that the pushbutton is as
close to them as possible. If the function relates to a group, make this clear using a group box.

m [f pushbuttons relate to a table displayed on the screen, place them underneath it in a horizontal row,
close together, with a blank line between them and the table.

m When the user chooses a pushbutton, the system tells the program which function is chosen. At this
point, control of the program passes back to a work process on the application server, which processes
the PAI processing block.

(C) SAP AG BC410 5-33

Pushbuttons: Attributes

Attributes

General Dictionary ‘ Program Display

e Name e From ABAP e Dialog behavior e
° Dictionary
e Icon display
- lcon name
- Quickinfo
e Start position
e Size
- Static

e Modif. groups
e Function code
- F code
- F type

© SAP AG 2002

m Pushbuttons may contain text (7ext attribute), an icon, or both. You can either specify an icon statically
or dynamically, using the function module ICON_CREATE.

®m You can change the visible length, output field, and invisible attributes dynamically using the system
table SCREEN.

B You can change the text on a pushbutton dynamically. To do this, set the Output field attribute in the
Screen Painter to active, and create a global field with the same name in your ABAP program. Because
the Screen Painter field and the program field have the same name, any changes to the field contents will
be immediately visible on the screen (similarly to input/output fields).

(C) SAP AG BC410 5-34

Creating and Processing Pushbuttons

Screen Painter

Layout Editor

Screen
PROCESS AFTER INPUT. MRcllEN

MODULE user_command 100.

Element List

| ok_code | OK

ABAP
© SAP AG 2002

® When you create a pushbutton, you must:

* Create a pushbutton: Choose the pushbutton object from the Screen Painter element list, place it on
the screen, and assign a name to it. You can enter a static text in the 7ext attribute. Enter a function
code for the pushbutton in the Function code attribute. This is placed in the OK_CODE field
automatically when the user chooses the pushbutton on the screen.

* Activate the command field (OK_CODE field): You must give the field a name in the element list
of the Screen Painter, then declare an identically-named field in the ABAP program with reference to
the system field sy-ucomm.

When the user chooses a function on the screen, the system places the corresponding function code into

the OK_CODE field. You can then query the field and use the result to trigger the appropriate coded

processing block.

If the user chooses a pushbutton that has the function type >’ (space), the PAI event is processed.

If the user chooses a pushbutton that has the function type E, the system processes a module with the AT

EXIT-COMMAND addition. This happens before the automatic field transport and the field input

checks. The system places the function code that has been triggered into the OK_CODE field, which you

can then query in the module.

After the AT EXIT-COMMAND module, the system continues processing the screen normally (field
input checks, followed by PAI processing).

(C) SAP AG BC410 5-35

Input/Output Elements: Unit Summary H’
DA

. You are now able to:

® Use input/output fields, checkboxes, radio button
groups, and pushbuttons in your programs.

© SAP AG 2002

(C) SAP AG BC410 5-36

*e®

D,

Exercises

"—“ Unit: Screen Elements for Input/Output

Topic: Input/output fields on screens, input checks, input help,
and mode selection using a radio button group

At the conclusion of these exercises, you will be able to:

Create input/output fields for screens.
Make input checks.
Use input helps in your programs.
Create radio button groups and program the relevant logic.
Make dynamic changes to screens.
Add input/output fields to your maintenance transaction for flight

information. The airline, flight number, and flight date fields should be
ready for input.

Support the user by checking the entries and providing input help.
Allow the user to switch between different program modes:
Display mode
Flight data maintenance mode (the user can change the aircraft type)
Maintain bookings (you will use this later)

If the user changes the aircraft type, he or she should be able to save the
changed value.

1-1 Put the input/output fields on the screen.

1-1-1 Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise (or copy the model solution SAPMBC410ADIAS_GUI).

You can use the model solutions SAPMBC410AINPS_INPUT_FIELD.

1-1-2 Use the ABAP Dictionary structure SDYN_CONN in the 74ABLES statement
(in the TOP include) to create a structure with the same name for transporting
data.

(C) SAP AG

BC410 5-37

1-2

1-3

1-1-3 Create the following fields on the screen. Use the facility for using fields from

1-1-4

the ABAP Dictionary.
Screen 100 | I/O Fields, Text fields: Attributes for fields:
SDYN_CONN Input: ON
-CARRID Output: ON
-CONNID Required entry: ON
-FLDATE SET parameter: ON

GET parameter: ON

Attributes for each field:
Input: OFF
Output: ON

I/O Fields, Text Fields:
SDYN_CONN
-PRICE
-CURRENCY
-PLANETYPE
-SEATSMAX
-SEATSOCC
-PAYMENTSUM

In the PAI event of screen 100, call a module read_sflight. Create the module
using forward navigation. Try to read the corresponding data record from table
sflight, and analyze the return code sy-subre. If the data record does not exist,
display message 038 from class BC410 as an information message and refresh
the output fields.

Execute the input checks and extend the navigation functions on the screen to include
the Exit function.

1-2-1

1-2-2

1-2-3

Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise or copy the corresponding model solution
SAPMBC410AINPS_INPUT_FIELD. You can use the model solution
SAPMBC410AINPS_CHECK_INPUT for orientation.

Change the information message in 5-1-4 to an error message. Read the
database table only if the user changes one or more entries on the screen. Make
sure that the fields are ready for input again if the data record does not exist.

Assign the function codes EXIT and CANCEL to the standard keys SHIFT-F3
(Exift) and F12 (Cancel). Ensure that these functions are processed before the
automatic input checks. If the user chooses Exit, leave the program. If the user
chooses Cancel, initialize the input/output fields and display the screen again.

Make the user’s task easier by providing input help.

1-3-1

Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise or copy the corresponding model solution
SAPMBC410AINPS_CHECK_INPUT. You can use the model solution
SAPMBC410AINPS_HELP_FOR_INPUT for orientation.

(C) SAP AG

BC410 5-38

1-3-2

On screen 100, set the Dropdown attribute to List box for the input/output field
sdyn_conn-carrid. Make sure that the program attribute Value list is setto ’’
(from ABAP Dictionary).

Create a radio button group to allow the user to choose one of a range of program

modes.

1-4-1

1-4-2

1-4-3

1-4-4

Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise (or copy the model solution
SAPMBC410AINPS_HELP_FOR_INPUT). Use the model solution
SAPMBC410AINPS_RADIOBUTTON for orientation.

On screen 100, create a radio button group with the buttons view,
maintain_flights, and maintain_bookings. Make sure that the function code
MODE (with type *’) is triggered when the user chooses a different mode.
Create a group box around the radio button group called frame and assign it the
text Mode. Declare the relevant data fields in your top include.

Program the Maintain flight data mode. In this mode, the input/output field
sdyn_conn-planetype should be ready for input and required. Create a module
modify_screen to make the corresponding dynamic screen modification when
the field is populated with data.

If the user enters a new aircraft type only, check whether the number of seats
booked is greater than the maximum number of seats. To do this, update the
field sdyn_conn-seatsmax from table SAPLANE in a new PAI module. If an
error occurs, display message 109 from class BC410 as an error message and
transport the maximum number of seats back to the screen.

Create a new PAI module trans_from_dynp to populate a new Global variable
wa_sflight of ABAP Dictionary type SFLIGHT with the corresponding fields
from sdyn_conn. The new work area will be used next to update the SFLIGHT
table with the new aircraft type and the new maximum number of seats.

Assign the function code SAVE (function type *’) to the standard key Ctrl-S
(Save). If the user chooses this function, save the new data record in the
database. In subroutine update_sflight, use a direct database update in the
form:

UPDATE sflight FROM wa sflight.

IF sy-subrc NE O. -

MESSAGE a008.

ENDIF.

MESSAGE s009.

(This process would normally use a suitable SAP lock, but we have omitted it
here for simplicity.)

(C) SAP AG

BC410 5-39

Solutions

/ Unit: Screen Elements for Input/Output

Topic: Input/output fields on screens, input checks, input help,
and mode selection using a radio button group

5-1 Model solution SAPBC410AINPS_INPUT_FIELD

Add the coding in bold type to your program. Create the new subroutines using forward navigation.

Flow logic screen 100
PROCESS BEFORE OUTPUT.
MODULE status_0100.
MODULE clear_ok_code.
*
PROCESS AFTER INPUT.
MODULE read sflight.
MODULE user_command_0100.
Top include
PROGRAM sapmbc4lOainps_input_field MESSAGE-ID bc410.

TABLES sdyn_conn.

DATA ok_code TYPE sy—-ucomm.

PBO module include

MODULE status_0100 OUTPUT.
SET PF-STATUS ’STATUS_100'.
SET TITLEBAR 'TITLE_100".
ENDMODULE . " STATUS_0100 OUTPUT

MODULE clear_ok_code OUTPUT.
CLEAR ok_code.
ENDMODULE . " clear_ok_code OUTPUT

(C) SAP AG BC410 5-40

PAI module include

MODULE user_command_0100 INPUT.
CASE ok_code.
WHEN ’BACK’'.
LEAVE TO SCREEN O.
ENDCASE.
ENDMODULE . " USER_COMMAND_Q0100 INPUT

MODULE read sflight INPUT.
SELECT SINGLE * FROM sflight INTO CORRESPONDING FIELDS OF sdyn_ conn
WHERE carrid = sdyn_conn-carrid
AND connid
AND fldate
IF sy-subrc NE O.
CLEAR: sdyn_conn.
MESSAGE i038.
ENDIF.
ENDMODULE . " read sflight INPUT

sdyn_conn-connid

sdyn_conn-fldate.

5-2 Model solution SAPMBC410AINPS_CHECK_INPUT

Add the coding in bold type to your program. Create the new modules using forward navigation.

Top include

No changes are necessary.

Flow logic screen 100

PROCESS BEFORE OUTPUT.
MODULE status_0100.
MODULE clear_ok_code.

*

PROCESS AFTER INPUT.

MODULE exit AT EXIT-COMMAND.

(C) SAP AG BC410 5-41

CHAIN.

FIELD: sdyn_ conn-carrid,

sdyn_conn-connid,

sdyn_conn-fldate MODULE read sflight ON CHAIN-REQUEST.

ENDCHAIN.

MODULE user_command_0100.

PBO module include

No changes are necessary.

PAI module include

MODULE user_command_0100 INPUT.

CASE ok_code.
WHEN ’BACK' .

LEAVE TO SCREEN O.

ENDCASE.
ENDMODULE .

MODULE exit INPUT.
CASE ok_code.

WHEN 'EXIT'.

LEAVE PROGRAM.

WHEN 'CANCEL'.

" USER_COMMAND_0100 INPUT

CLEAR: sdyn_conn.
SET PARAMETER ID: 'CAR' FIELD space,

'CON' FIELD space,
'DAY' FIELD space.

LEAVE TO SCREEN 100.

ENDCASE .

ENDMODULE .

" exit INPUT

MODULE read_sflight INPUT.

SELECT SINGLE * FROM sflight INTO CORRESPONDING FIELDS OF sdyn_conn

WHERE carrid

AND connid

AND fldate
IF sy-subrc NE O.

MESSAGE e038.
ENDIF.

ENDMODULE .

sdyn_conn-carrid
sdyn_conn-connid

sdyn_conn-fldate.

" check_sflight

INPUT

(C) SAP AG

BC410

5-42

5-4 Model solution SAPMBC410AINPS_RADIOBUTTON

Add the coding in bold type to your program. Create the new modules using forward navigation.

Main Program

INCLUDE mbc4l0ainps_radiobuttontop.
INCLUDE mbc4l0ainps_radiobuttonoOl.
INCLUDE mbc4l0ainps_radiobuttoniOl.
INCLUDE mbc41l0ainps radiobuttonfOl.

Top include
PROGRAM sapmbcé4l0ainps_radiobutton MESSAGE-ID bc4l0
TABLES sdyn_conn.

DATA: BEGIN OF mode,
view VALUE 'X', "selected
maintain flights,
maintain_ bookings,
END OF mode.

DATA ok_code TYPE sy—-ucomm.

DATA wa_sflight TYPE sflight.

Subroutine include

Insert the following subroutine in the include:

FORM update_sflight.
UPDATE sflight FROM wa_ sflight.
IF sy-subrc NE O.
MESSAGE a008.
ENDIF.
MESSAGE s009.
ENDFORM. " update sflight

(C) SAP AG BC410

5-43

Flow logic screen 100

PROCESS BEFORE OUTPUT.
MODULE status_0100.
MODULE modify screen.
MODULE clear_ok_code.
*
PROCESS AFTER INPUT.
MODULE exit AT EXIT-COMMAND.
CHAIN.

FIELD: sdyn_conn-carrid,
sdyn_conn-connid,
sdyn_conn-fldate MODULE check_sflight ON CHAIN-REQUEST.

ENDCHAIN.

CHAIN.
FIELD: sdyn_conn-planetype,
sdyn_conn-seatsmax MODULE check planetype ON CHAIN-REQUEST.
ENDCHAIN.

MODULE trans_from dynp.

MODULE user_command_ 0100.

PBO module include

MODULE status_0100 OUTPUT.
SET PF-STATUS ’STATUS_100".
SET TITLEBAR 'TITLE_100".

ENDMODULE . " STATUS_0100 OUTPUT

MODULE clear_ok_code OUTPUT.
CLEAR ok_code.

ENDMODULE . " clear_ok_code OUTPUT

MODULE modify screen OUTPUT.

CHECK NOT mode-maintain flights IS INITIAL.

(C) SAP AG BC410 5-44

CHECK NOT sdyn_conn-planetype IS INITIAL.
LOOP AT SCREEN.

IF screen—-name = 'SDYN_CONN-PLANETYPE'.
1.

screen-input

screen-required = 1.

MODIFY SCREEN.
ENDIF.

ENDLOOP.

ENDMODULE .

PAI module include

MODULE user_command_0100 INPUT.
CASE ok_code.
WHEN 'SAVE'.
PERFORM update sflight.
WHEN ’"BACK’ .
LEAVE TO SCREEN 0.

ENDCASE.

ENDMODULE . " USER_COMMAND_0100

MODULE trans_from dynp INPUT.

MOVE-CORRESPONDING sdyn_conn TO wa_sflight.

ENDMODULE . " trans_ from dynp

MODULE exit INPUT.
CASE ok_code.
WHEN "EXIT’.
LEAVE PROGRAM.
WHEN ’CANCEL’ .

CLEAR: sdyn_conn.

SET PARAMETER ID: ’'CAR’ FIELD space,
"CON’" FIELD space,
"DAY’" FIELD space.

LEAVE TO SCREEN 100.
ENDCASE.

ENDMODULE . " exit

INPUT

(C) SAP AG BC410

5-45

MODULE check_ planetype INPUT.
SELECT SINGLE seatsmax INTO sdyn conn-seatsmax FROM saplane
WHERE planetype = sdyn_conn-planetype.
CHECK sdyn_conn-seatsmax < sdyn_conn-seatsocc.
MESSAGE e109.
ENDMODULE . " check_planetype INPUT

MODULE read_sflight INPUT.
SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn_conn FROM sflight
WHERE carrid = sdyn_conn-carrid
AND connid = sdyn_conn-connid
AND fldate = sdyn_conn-fldate.
IF sy-subrc NE 0.
MESSAGE e038.
ENDIF.
ENDMODULE . " check_sflight INPUT

(C) SAP AG BC410

5-46

Screen Elements: Subscreens and Tabstrip wr
Controls SAP

Contents:

® Subscreens

® Tabstrip controls

© SAP AG 1999

(C) SAP AG BC410

Subscreens and Tabstrip Controls: Unit Objectives Hr

At the conclusion of this unit, you will be able to:

® Use subscreens and tabstrip controls on screens
and selection screens in your programs.

© SAP AG 2002

(C) SAP AG BC410 6-2

Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

© SAP AG 1999

Tabstrip controls

(C) SAP AG

BC410

Subscreens (1)

Reserved area
Subscreen | Subscreen Il oh a screen;

filled at runtime

SUIPSCrEEn ® Modularization of screens

® Dynamic screen
modifications

© SAP AG 2002

m A subscreen area is a reserved rectangular area on a screen, in which you place another screen at run
time. Subscreen areas may not contain any other screen elements. To use a subscreen, you create a
second screen (with the type subscreen) and display it in the subscreen area you defined on the main
screen.

m A subscreen is an independent screen which you display within another screen. You may want to use a
subscreen as a way of displaying a group of objects from the main screen in certain circumstances, but
not in others. You can use this technique to display or hide extra fields on the main screen, depending on
the entries the user has made.

(C) SAP AG BC410 6-5

Subscreens (2) H’
AP

Reserved area
on a screen;

:A \ filled at runtime

® Modularization of screens

Subscreen |

zlferel zlf ezl ® Reusable subscreens

(2]
c
o
(7
(2]
=
(1]
®
=
(2]
c
o
(74
2
(1}
o
=

© SAP AG 2002

m A second use for subscreens is that different programs can use the same subscreens. To set this up, you
must execute other screen programs within your main program.

B You can include more than one subscreen on a single main screen. You can also determine the
subscreens dynamically at run time.

B You can use subscreens in the following circumstances:
] In screen enhancements (screen exits)
e Within other screen objects (tabstrip controls)
* Inthe Modification Assistant
e In Web transactions

(C) SAP AG BC410 6-6

Subscreen Area: Attributes

Attributes
‘ General ‘ Subscreen
e Object name e Resizable
e Start position - Vertical
e Size - Horizontal
- Static e Minimum size
- Vertical
- Horizontal

e Scrollable

© SAP AG 2002

m [f the subscreen is larger than the subscreen area in which it is called, the system displays only what will
fit on the screen, starting at the upper-left corner. However, you can use the Scrollable attribute to ensure
that, if the screen is too big, the system will display scrollbars.

m The resizing attributes control whether the size of a subscreen area can be changed vertically and
horizontally. You should set these attributes if you want the size of the subscreen area to change with the
size of the whole window. You can use the minimum size attribute to set a lower limit beyond which the
subscreen area cannot be resized.

m The Context menu attribute allows you to assign a context-sensitive menu to the output fields on the
subscreen.

m The following restrictions apply to subscreens:

* CALL SUBSCREEN is not allowed between LOOP and ENDLOOP or between
CHAIN and ENDCHAIN.

* A subscreen may not have a named OK_CODE field.

* Object names must be unique within the set of all subscreens called in a single main screen.

¢ Subscreens may not contain a module with the AT EXIT-COMMAND addition.

* You cannot use the SET TITLEBAR, SET PF-STATUS, SET SCREEN, or LEAVE SCREEN
statements in the modules of a subscreen.

(C) SAP AG BC410 6-7

Creating a Subscreen Area

Screen Painter
Layout Editor

Object Attributes

© SAP AG 2002

m To create a subscreen area, choose subscreen from the object list in the Screen Painter and place it on the
screen. Fix the top-left corner of the table control area and then drag the object to the required size.

m In the Object text field, enter a name for the subscreen area. You need this to identify the area when you
call the subscreen.

(C) SAP AG BC410 6-8

Calling a Subscreen ”'
SAF

PROCESS BEFORE OUTPUT.
(7. VA 6)28:]e) 21| <subarea>
i (eifuphinyfe] <program name> <dynpro_ number>.
PROCESS AFTER INPUT.

(o) V] e)=fS @i <subarea>.

Subscreen in same
program

PROCESS BEFORE OUTPUT.
PROCESS BEFORE OUTPUT.

[101

PROCESS AFTER INPUT. >

CALL SUBSCREEN subil
INCLUDING SY-CPROG '0101'.

PROCESS AFTER INPUT.

101

CALL SUBSCREEN subil. .
—

© SAP AG 1999

®m To use a subscreen, you must call it in both the PBO and PAI sections of the flow logic of the main
screen. The CALL SUBSCREEN <subarea> statement tells the system to execute the PBO and PAI
processing blocks for the subscreen as components of the PBO and PAI of the main screen. You
program the ABAP modules for subscreens in the same way as for a normal screen (apart from the
restrictions already mentioned).

(C) SAP AG BC410

6-9

Special Case: Visibility of Data

TABLES sdyn_conn. LH 0400 FRANKFURT FRA DE ..

DATA wa_spfli TYPE spfli. 1001 _LH 10400 FRANKFURT g
DATA: dynnr TYPE sy-dynnr, 0110
ok code TYPE sy-ucomm. BOOK
Element list:
PROCESS BEFORE OUTPUT.

SDYN_CONN-CONNID LH ..
SDYN_CONN-CARRID 0402 CALL SUBSCREEN sub
OK_CODE INCLUDING sy-cprog dynnr.

PROCESS AFTER INPUT.

© SAP AG 2002

m The fields that you use within the flow logic are global fields of your ABAP program. These fields must
be declared in the TOP include of your program.

(C) SAP AG BC410 6-10

Subscreens from External Programs

ABAP Program A

Subscreen
area

JData transport ?

subscreen

>

ABAP Program B

Global data
(Screen data)

Subscreen

© SAP AG 2002

m [f the subscreen is not in the same module pool as the main program, the global data of the main
program is not available to the subscreen and the data from the screen will not be transferred back to the

program. You must program the data transfer yourself (for example, using a function module that

exports and imports data, with an appropriate MOVE statement in the subscreen coding).

(C) SAP AG

BC410

Subscreens: Encapsulation in Function Groups ‘W

ABAP Program Function group

Global data Global data
(Screen data) (Screen data)

Screens/Subscreens

Screen

Subscreen
area

Function modules

) —
Spq FUNCTION F1
FUNCTIONF2 %

-

© "SAP AG 2002

m [f you want to use subscreens in the screens of several different programs, you encapsulate the
subscreens in a function group and use function modules to transport data between the program in which
you want to use the subscreen and the function group.

B You pass data between the calling program and the function group using the interfaces of the function
modules.

m This is the technique used for customer subscreens (screen enhancements).

(C) SAP AG BC410 6-12

Subscreens in Function Groups: Call Sequence

ABAP Program Function group: SAPL...
PROCESS BEFORE OUTPUT.

MODULE export data. Global data

CALL SUBSCREEN subil (Subscreen data)
INCLUDING 'SAPL...' '0100'.

PROCESS AFTER INPUT.

CALL SUBSCREEN subil.
MODULE import data.

% MODULE export data OUTPUT. .
CALL FUNCTION 'F1' Function F1

EXPORTING ‘
pl f1 = ...
ENDMODULE .

P MODULE import data INPUT.
CALL FUNCTION [HE2H

IMPORTING -
pl _f2 = ...

ENDMODULE .

ORI AT Z00Z

B You use function modules to transport data between the calling program and the function group.

m To declare the data from the calling program to the subscreen from the function group, use a module
before the subscreen call. This calls a function module whose interface you can use to pass the required
data to the function group.

®m The function module call must occur before the subscreen call. This ensures that the data is known in the
function group before the PROCESS BEFORE OUTPUT processing block of the subscreen is called.

m The sequence is reversed in the PAI module of the calling screen. You call the PROCESS AFTER
INPUT processing block of the subscreen before you call a function module to pass the data from the
function group back to the calling program.

(C) SAP AG BC410 6-13

Subscreens in Function Groups: Data Transport H’

ABAP Program Function group: SAPL...

Global data
(Subscreen data)

DATA: f2_glob_datl
fl_glob_datl ... =

T MODULE export_data OUTPUT. FUNCTION f1.
CALL FUNCTION 'F1'

EXEORTING) £1_glob_datl = pl_£1.
pl f1 = ... = =

ENDFUNCTION.

ENDMODULE .

» MODULE import data INPUT.
caLL FuncTION [

m - pl _f2 = £2 glob datl.
pl £2 = ...

ENDMODULE.

ORI AT 1999

m For the data from the calling program to be available globally in the function group, you must transfer
the interface parameters from the function module into global data fields of the function group.

m The function module that you use to transfer the data from the calling program into the function group
must copy its interface parameters into the global data in the function group.

m The function module that you use to transfer data from the function group to the calling program must
copy the corresponding data from the global data of the function group into its interface parameters.

(C) SAP AG BC410 6-14

Tabstrip Controls

, Tabstrip controls

© SAP AG 1999

(C) SAP AG BC410 6-15

Screen Elements: Tabstrip Controls

An easy way to present

Ny | information that
belongs together logically
Depart. = Arrival Info
Country DE . .
_ |7 ® Displays various components
City Eenlin of an application on a single
Airport | TXL screen and allows the user
Time 10:10:00 to navigate between the
components

® Container for other screen
objects

© SAP AG 2002

m Tabstrip controls provide you with an easy, user-friendly way of displaying different components of an
application on a single screen and allowing the user to navigate between them. Their intuitive design
makes navigation much easier for end users.

m Tabstrip controls are a useful way of simplifying complex applications. You can use tabstrip controls
wherever you have different components of an application that form a logical unit. For example, you
might have a set of header data that remains constant, while underneath it you want to display various
other sets of data.

® You should net use tabstrip controls if:

* You need to change the screen environment (menus, pushbuttons, header data, and so on) while
processing the application components. The screen surrounding the tabstrip must remain constant.

* The components must be processed in a certain order. Tabstrip controls are designed to allow users to
navigate freely between components.

* The components are processed dynamically, that is, user input on one tab page causes other tab pages
to suddenly appear.

m Tabstrip controls are compatible with batch input processing.

(C) SAP AG BC410 6-16

Tabstrip Elements W
SAP

Current tab title

Scrollbar for more tab pages

Depart. Arrival
Country | DE v Depart.

City Berlin Arrival

Info
Airport TXL

Seats
Time 10:10:00

List of all tab pages
<4— Current page is indicated
Selection possible

Tab border

© SAP AG 2002

m A tabstrip control consists of individual pages with a tab page and tab title.

m The tabstrip control may have only one row of tab titles.

m [f the tabstrip control contains too many pages, it is not possible for all of the tab titles to be displayed at
once. In this case, a scrollbar allows you to scroll through the remaining tab pages. In the upper-right
corner of the tab is a pushbutton. If the user selects this pushbutton, a list of all of the tab titles is
displayed. The active tab title is marked with a checkmark.

(C) SAP AG BC410 6-17

Page Elements: Technical View

Text

Subscreen
area

CONTENTS

-+

Contents

Subscreen
screen

© SAP AG 2002

m A page element consists of a tab title, a subscreen area, and a subscreen.

m From a technical point of view, the system handles tab titles like pushbuttons.

m The contents of page elements are displayed using the subscreen technique. You assign a subscreen area
to each page element for which you can then call a subscreen.

(C) SAP AG BC410 6-18

Tabstrip Control: Attributes

Attributes
‘ General ‘ Tabstrip
e Object name e Resizable
e Start position - Vertical
e Size - Horizontal
- Static e Minimum size
- Vertical
- Horizontal

© SAP AG 2002

m In addition to the general attributes Object name, Starting position, and static size, tabstrip controls also

have special attributes.

m For details of these special attributes, see the section in this unit on subscreen attributes.

(C) SAP AG BC410

6-19

Use SAP Partner Only

Internal

Creating a Tabstrip Control

Tabstrip Area

Subscreen Areas

© SAP AG 2002

B You create a tabstrip control by carrying out the following three steps:
* Define the tab area.
o Define the tab titles and, if necessary, add further tab titles.
* Assign a subscreen area to each page element.

(C) SAP AG BC410 6-20

l1aujie g JVYS ©9SM |euiaju]

AjJug

g (=]

Layout Editor

A

2 Object name

Obiject Attributes

Type TABSTRIP corresponds to

structure type CXTAB TABSTRIP with the
|MY_TAB_STRIP component types:

activetab active tab title
Jo

ABAP

khkkkkkkkkkhkkkhkkkkhkkkhkkkkkkkkkkkkk * %%

* INCLUDE MZxxxTOP
khkkkkkkhkhkhkhkhkhkhkhhkhhkdkdkhhhkdkhhhkhdkkkkkkhk

CONTROLS: my tab strip TYPE TABSTRIP.

© SAP AG 2002

To create a tabstrip control area, choose Tabstrip control from the object list in the Screen Painter and

place it on the screen. Fix the upper-left corner of the table control area and then drag the object to the

required size.

m Assign a name to the tabstrip control in the Object name attribute. You need this name to identify your

tabstrip control.

In your ABAP program, use the CONTROLS statement to declare an object with the same name. Use

TABSTRIP as the type.

The type TABSTRIP is defined in the type pool CXTAB. The ACTIVETAB field contains the function

code of the tab title of the currently active tabstrip. The other fields are reserved for internal use.

The default number of tab pages for a tabstrip control is two.

(C) SAP AG

BC410 6-21

Creating a Tabstrip Control: Tab Title

Screen Painter
Layout Editor

Object Attributes

-

ioct Li
Clafee e ctType| Meaning

P Local GUI function
normal

© SAP AG 2002

m Technically, tab titles are treated in the same way as pushbuttons. They have a name, a text, a function
code, and a function type. You enter these in the Name, Text, FctCode, and FctType fields of the object
attributes.

m A tab title can have the function type *’ (space) or P. If the function type is °’ (space), the PAI processing
block is triggered when the user chooses that tab and the function code of the tab title is placed in the
command field. If the function type is P, the user can scroll between different tab pages of the same type
without triggering the PAI processing block. If you want your tabstrip control to have more than two
pages, you must create further tab titles. To do this, choose Pushbutton from the object list in the Screen
Painter and place it in the tab title area.

(C) SAP AG BC410 6-22

Screen Painter
Layout Editor

]I

Attributes: Subscreen Attributes: Pushbutton

UB1
| SUB1 |

Subscreen
area

S

© SAP AG 1999

B You must assign a subscreen area to each tab page.
m The subscreen area assigned to a tab page is automatically entered as the Reference object (in the
Dictionary attributes) for the tab title of that page.

m To assign a subscreen area to one or more tab pages, choose the relevant tab title in the fullscreen editor,

choose the Subscreen object, and place it on the tab page.

®m Alternatively, you can assign a single subscreen area to several tab pages by entering the name of the

subscreen area directly in the Reference object field of the attributes of the relevant tab pages.

(C) SAP AG BC410

Scrolling Locally in Tabstrip Controls

Screen

TAB1 | TAB2 | TAB3 |

Screen
TAB1 | TAB2 | TAB3 | Page 1 CALL SUBSCREEN ...
1
| —
Page 2 CALL SUBSCREEN ...
Page 1
Page 3 CALL SUBSCREEN ...

Scrolling without
triggering PAI

© SAP AG 2002

m If you have assigned a different subscreen area to each page element in a tabstrip control, you can scroll
between the pages locally at the front end.

m To do this, you must send all of the subscreens to the front end when you send the main screen itself. All
of the tab titles in the tabstrip control must also have function type P.

m When you scroll between the different page elements, there is no communication between the
presentation server and the application server.

® When the user chooses a function on the screen that triggers PAI processing, the system processes the
PAI blocks of all of the subscreens as well. This means that all of the field checks are run. In this
respect, you could regard the tabstrip control as behaving like a single large screen.

m Local scrolling in tabstrip controls is more appropriate for display transactions.

(C) SAP AG BC410 6-24

Screen
PROCESS BEFORE OUTPUT. Painter

Screen
_FctType P| cann suBscreen

MY_TAB_STRIP =

L INCLUDING sy-cprog '0101'.
i’ CALL SUBSCREEN
INCLUDING sy-cprog '0102'.
e FC3 I CALL SUBSCREEN

INCLUDING sy-cprog '0103'.
sularea3

FC1

PROCESS AFTER INPUT.

subarea2 CALL SUBSCREEN [Stie:-8<-FhN .
subarea1 CALL SUBSCREEN [GltieERSEVA |
CALL SUBSCREEN [EitieERS-K] |

ABAP
CONTROLS: my tab strip
TYPE TABSTRIP.

© SAP AG 2002

m To program a tabstrip control to scroll locally at the front end, you must:
* Assign a separate subscreen area to each tab page. A subscreen will be sent to each of these when the
screen is processed.
¢ Call all of the subscreens from the flow logic.
* Assign function type P to all of the tab titles.
m The system hides any page element whose subscreen contains no elements that can be displayed.
m [f there are no page elements containing elements that can be displayed, the system hides the entire
tabstrip control.
m For more information about tabstrip controls, refer to the online documentation, SUB-1.

(C) SAP AG BC410 6-25

Scrolling in Tabstrip Controls

Dep. |Arr. .| Info Dep. ||Arr. | Info
Page 1 Page 2

1 T

PAI PBO

® Determines which page ® Sets the subscreen
the user has chosen ‘ corresponding to the

page chosen by the user

® Sets active tab page

© SAP AG 2002

m If all of the page elements share a single subscreen area, the program analyzes the function code of the
chosen tab title to determine which screen is displayed.
m There are two steps in this process:
* In the PAI processing block, the program determines which page element needs to be active, based on
the tab title chosen by the user.
* When the PBO processing block is processed again, the program displays the corresponding screen.
m During this process, the system checks only the fields of the displayed subscreen.

(C) SAP AG BC410 6-26

Screen

ABAP

CONTROLS: my tab strip TYPE TABSTRIP.
DATA : ok _code TYPE sy-ucomm,
dynnr TYPE sy-dynnr.

MODULE fill dynnr OUTPUT.
CASE my tab strip-activetab.

WHEN 'FCl'.
subarea dynnr = '0101'.

WHEN 'FC2'.
dynnr = '0102"'.

WHEN 'FC3'.
dynnr = '0103"'.

Screen WHEN OTHERS.

PROCESS BEFORE OUTPUT. Painter dynnr = '0101'.
MODULE fill dynnr. my tab_strip-activetab = 'FCl'.
- ENDCASE .

CALL SUBSCREEN ENDMODULE .

INCLUDING SY-CPROG dynnr.
MODULE user_command INPUT.

PROCESS AFTER INPUT. CASE ok_code.
CALL SUBSCREEN . WHEN 'FCl' OR 'FC2' OR 'FC3'.
. my tab strip-activetab = ok code.
MODULE user_command. ENDCASE.

ENDMODULE .

© SAP AG 2002

If you want the application program to process scrolling in a tabstrip control, the following requirements

must be met:

* All of the tab pages must share a common subscreen area.

¢ All of the tab titles must have the function code type ’’ (space).

* In the flow logic, you must use a variable to call the screen that is to be displayed in the subscreen
area.

In the PAI block, you must call a module in which the function code of the active tab title is placed in

the ACTIVETARB field of the structure you created in your program with type TABSTRIP. In the

example in the graphic, this is MY_TAB_STRIP.

The PBO processing block must contain a module before the subscreen is called, in which you place the

name of the subscreen in the corresponding variable. You must assign an initial value to this field so that

the screen is processed the first time (before the user has had a chance to choose a tab title).

You can hide a tab page at run time by setting the corresponding tab title to inactive using the system

table SCREEN (SCREEN-ACTIVE = 0). You should do this before processing the tabstrip control for

the first time to ensure that the screen environment remains constant.

(C) SAP AG BC410 6-27

Creating Tabstrip Controls Using the Wizard

Screen Painter
Layout Editor

© SAP AG 2002

®m You can use the Tabstrip Control Wizard to help you create tabstrip controls and insert them on screens
in a program. The Wizard guides you through the process. You can return to previous settings at any
time. Program objects are created upon the final screen only on completion of the process. The Wizard
creates not only the tabstrip control but also the corresponding statements in the flow logic, together with
the relevant modules, subroutines, and necessary data definitions.

m In addition to the tabstrip control on the screen and the corresponding flow logic, the following objects
are created if they do not already exist:
* The main program and the screen for the tabstrip control together with its flow logic.
* Empty subscreens for the individual tabstrip control pages.
¢ Includes for data definition, PBO modules, PAI modules, and INCLUDE statements for these
includes.

m All objects are placed in the inactive object list.

(C) SAP AG BC410 6-28

Subscreens and Tabstrip Controls: Unit Summary H’

. You are now able to:

® Use subscreens and tabstrip controls on screens
and selection screens in your programs

© SAP AG 1999

(C) SAP AG BC410 6-29

Exercises

Unit: Subscreens and Tabstrip Controls

Topic: Creating subscreens and tabstrip controls

At the conclusion of these exercises, you will be able to:

e Use subscreens and tabstrip controls on screens and selection screens in
your programs.

Display additional information on your screen, depending on the mode in
which the user is working.

> > > Extend the display to allow users to switch between the additional
information using a tabstrip control.

1-1 Extend the Maintenance screen (100) to display flight information and the aircraft
type. Use a subscreen to do this.

1-1-1 Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise (or copy the model solution
SAPMBC410AINPS_RADIOBUTTON). You can use the model solution
SAPMBC410ASUBS_SUBSCREEN for orientation.

1-1-2 On the maintenance screen (100), create a subscreen area with the following
attributes:

Subscreen SUB Attributes:

Vertical and horizontal
Resizing: ON

(C) SAP AG BC410 6-30

1-1-3

1-1-6

1-1-7

Create three screens 110, 120, and 130, each with the type subscreen and the
following attributes:

Screen 110 I/0 fields, text fields: For each field:

SDYN_CONN Input: OFF
- COUNTRYFR Output: ON
- COUNTRYTO
- CITYFROM
-CITYTO
- AIRPFROM
- AIRPTO
- DEPTIME
- ARRTIME

Screen 120 I/0O Fields, Text fields: Attributes for each field:
SAPLANE Input: OFF

- PLANETYPE Output: ON

- PRODUCER Output only: ON

- SEATSMAX

- TANKCAP

- CAP_UNIT

- WEIGHT

- WEI_UNIT

- OP_SPEED

- SPEED_UNIT

Screen 130 empty (Provided for the

bookings table)

In your TOP include, create a field DYNNR that you can use in the flow logic to
determine which subscreen should appear in the subscreen area.

Call the subscreen screens in the flow logic of screen 100. Before the call, write
a PBO module to determine which of the subscreens will appear. If the user is
in Display mode, call subscreen screen 110 with the flight information. If the
user is in Maintain flight data mode, call subscreen screen 120 with the aircraft
information. If the user chooses Maintain bookings mode, then empty screen
130 appears.

In the flow logic of screen 110, read the flight information from table SPFLI
using the key field values.

In the flow logic for screen 120, read the information for the aircraft
information from table SAPLANE using the value you have for the aircraft

type.

(C) SAP AG

BC410 6-31

1-2

Create a tabstrip control on screen 100 for displaying extra flight information and
details of the aircraft type.

1-2-1

1-2-2

1-2-3

1-2-4

1-2-5

Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise (or copy the model solution SAPMBC410ASUBS_SUBSCREEN).
You can use the model solution SAPMBC410ASUBS_TABSTRIP for
orientation.

Creating a tabstrip: Remove the subscreen area on screen 100 and create a
tabstrip control with the following attributes:

Tabstrip Name: Attributes:

controls MY_TABSTRIP Vertical and horizontal
Resizing: ON

Pushbutton Name: Attributes:

(Tab title 1) P1 Text: View flight data

Function code: FC1
Function type: <blank>
Reference field: SUB

Pushbutton Name: Attributes:

(Tab title 2) P2 Text: View technical data
for aircraft

Function code: FC2
Function type: <blank>
Reference field: SUB

Pushbutton Name: Attributes:

(Tab title 3) P3 Text: Maintain booking
Function code: FC3
Function type: <blank>
Reference field: SUB

In the TOP include of your program, create a data object for the tabstrip control
using the following statement:
CONTROLS MY_ TABSTRIP

In the flow logic of screen 100, implement the call for the subscreen screen in
the tabstrip control. The subscreen number will be in the field DYNNR created
in the previous exercise.

Before calling the subscreen, write a PBO module in which you determine
which of the subscreens is to be called (regardless of the mode in which the
user is working). Additionally, determine which subscreen screen you want to
set the first time the screen is displayed and assign the corresponding function
code to the field MY TABSTRIP-ACTIVETAB.

Extend your command field processing for screen 100 with the scroll logic for
the tabstrip control. Do this by assigning the relevant value to MY TABSTRIP-
ACTIVETAB.

(C) SAP AG

BC410 6-32

Solutions

/ Unit: Subscreens and Tabstrip Controls

Topic: Creating subscreens and tabstrip controls

1-1 Model solution SAPMBC410ASUBS_SUBSCREEN

Add the coding in bold type, and create new modules where appropriate using forward
navigation.

Top include
PROGRAM sapmbc4lOasubs_subscreen MESSAGE-ID bc41l0
DATA dynnr TYPE sy-dynnr. "#EC NEEDED
TABLES saplane.
TABLES sdyn_conn.
DATA: BEGIN OF mode,

view VALUE ’'X’, "selected

maintain_flights,

maintain_bookings,

END OF mode.

DATA ok_code TYPE sy—-ucomm.

DATA wa_sflight TYPE sflight.

Subroutine include

No changes are necessary.

(C) SAP AG BC410 6-33

Flow logic screen 100

PROCESS BEFORE OUTPUT.
MODULE status_0100.
MODULE modify_screen.
MODULE fill dynnr.
CALL SUBSCREEN sub INCLUDING sy-cprog dynnr.

MODULE clear_ok_code.

*

PROCESS AFTER INPUT.

MODULE exit AT EXIT-COMMAND.
* CALL SUBSCREEN sub.
CHAIN.
FIELD: sdyn_conn-carrid,
sdyn_conn-connid,
sdyn_conn-fldate MODULE check_sflight ON CHAIN-REQUEST.
ENDCHAIN.

CHAIN.
FIELD: sdyn_conn-planetype,
sdyn_conn-seatsmax MODULE check_planetype ON CHAIN-REQUEST.
ENDCHAIN.

MODULE trans_from_dynp.

MODULE user_command_0100.

(C) SAP AG BC410 6-34

Flow logic screen 110

PROCESS BEFORE OUTPUT.
MODULE get_ spfli.

PROCESS AFTER INPUT.

Flow logic screen 120
PROCESS BEFORE OUTPUT.
MODULE get_ saplane.

PROCESS AFTER INPUT.

Flow logic screen 130

No changes are necessary.

PBO module include

MODULE status_0100 OUTPUT.
SET PF-STATUS ’STATUS_100".
SET TITLEBAR 'TITLE_100".

ENDMODULE . " STATUS_0100 OUTPUT

MODULE clear_ok_code OUTPUT.
CLEAR ok_code.

ENDMODULE . " clear_ok_code OUTPUT

MODULE modify_screen OUTPUT.
CHECK NOT mode-maintain_flights IS INITIAL.

LOOP AT SCREEN.

IF screen—-name = ’'SDYN_CONN-PLANETYPE’ .
screen—-input = 1.
screen-required = 1.

(C) SAP AG BC410

6-35

MODIFY SCREEN.
ENDIEF.
ENDLOOP.

ENDMODULE. " modify_scre

MODULE get spfli OUTPUT.
ON CHANGE OF wa_sflight-carrid

OR wa_sflight-connid.

SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn conn FROM spfli

WHERE carrid = wa_sflight-carrid
AND connid = wa_sflight-connid.
ENDON .

ENDMODULE . " GET_SPFLI

MODULE get saplane OUTPUT.
ON CHANGE OF wa_sflight-planetype.
SELECT SINGLE * FROM saplane
WHERE planetype = wa_sflight-planetype.
ENDON .
ENDMODULE . " GET_SAPLANE

MODULE fill dynnr OUTPUT.
CASE 'X'.
WHEN mode-view.
dynnr = 110.
WHEN mode-maintain flights.
dynnr = 120.
WHEN mode-maintain bookings.
dynnr = 130.
ENDCASE .

ENDMODULE . " set_dynnr

PAI module include

MODULE user_command_0100 INPUT.
CASE ok_code.
WHEN " SAVE’ .
PERFORM update_sflight.

WHEN " BACK’ .

en OUTPUT

OUTPUT

OUTPUT

OUTPUT

(C) SAP AG BC410

6-36

LEAVE TO SCREEN O.
ENDCASE.
ENDMODULE . " USER_COMMAND_0100 INPUT

MODULE trans_from_dynp INPUT.
MOVE-CORRESPONDING sdyn_conn TO wa_sflight.

ENDMODULE . " trans_from_dynp INPUT

MODULE read_sflight INPUT.
SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn_conn FROM sflight
WHERE carrid = sdyn_conn-carrid
AND connid = sdyn_conn-connid
AND fldate = sdyn_conn—-fldate.
IF sy-subrc NE 0.
MESSAGE e038.
ENDIF.
ENDMODULE . " read_sflight INPUT

MODULE exit INPUT.
CASE ok_code.
WHEN "EXIT’.
LEAVE PROGRAM.
WHEN ' CANCEL' .
CLEAR: sdyn_conn, saplane, wa_sflight.
SET PARAMETER ID: ’'CAR’ FIELD space,
"CON’" FIELD space,
"DAY’ FIELD space.
LEAVE TO SCREEN 100.
ENDCASE.

ENDMODULE . " exit INPUT

MODULE check_planetype INPUT.
SELECT SINGLE seatsmax INTO sdyn_conn-seatsmax FROM saplane
WHERE planetype = sdyn_conn-planetype.
CHECK sdyn_conn—-seatsmax < sdyn_conn-seatsocc.
MESSAGE e109.
ENDMODULE . " check_planetype INPUT

(C) SAP AG BC410

6-37

1-2 Model solution SAPMBC410ASUBS_TABSTRIP

Add the coding in bold type, and create new modules where appropriate using forward navigation.

Top include

CONTROLS my_ tabstrip TYPE TABSTRIP.

Subroutine include

No changes are necessary.

Flow logic screen 100

No changes are necessary.

Flow logic screen 110

No changes are necessary.

Flow logic screen 120

No changes are necessary.

Flow logic screen 130

No changes are necessary.

PBO module include

MODULE status_0100 OUTPUT.
SET PF-STATUS ’STATUS_100'.
SET TITLEBAR 'TITLE_100".

ENDMODULE . " STATUS_0100 OUTPUT

MODULE clear_ok_code OUTPUT.
CLEAR ok_code.

ENDMODULE . " clear_ok_code OUTPUT

MODULE modify_screen OUTPUT.
CHECK NOT mode-maintain_flights IS INITIAL.

LOOP AT SCREEN.

(C) SAP AG BC410 6-38

IF screen—-name = ’SDYN_CONN-PLANETYPE' .
screen—-input = 1.

screen-required = 1.
MODIFY SCREEN.
ENDIF.

ENDLOOP.

ENDMODULE . " modify_screen OUTPUT

MODULE get_spfli OUTPUT.

ON CHANGE OF wa_sflight-carrid OR wa_sflight-connid.

SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn_conn FROM spfli

WHERE carrid = wa_sflight-carrid

AND connid = wa_sflight-connid.

ENDON.
ENDMODULE . " GET_SPFLI
MODULE get_saplane OUTPUT.

ON CHANGE OF wa_sflight-planetype.

SELECT SINGLE * FROM saplane
WHERE planetype = wa_sflight-planetype.

ENDON.

ENDMODULE . " GET_SAPLANE

MODULE fill dynnr OUTPUT.
CASE my_ tabstrip-activetab.
WHEN 'FC1l'.
dynnr = 110.
WHEN 'FC2'.
dynnr = 120.
WHEN 'FC3'.
dynnr = 130.
WHEN OTHERS.
my tabstrip-activetab = 'FCl1l'.
dynnr = 110.

ENDCASE.

OUTPUT

OUTPUT

(C) SAP AG BC410

6-39

PAI module include

MODULE user_command_0100 INPUT.
CASE ok_code.
WHEN 'FCl' or 'FC2' or 'FC3'.
my tabstrip-activetab = ok_code.
WHEN ' SAVE'.
PERFORM update_sflight.
WHEN ’BACK’ .
LEAVE TO SCREEN O.
ENDCASE.
ENDMODULE . " USER_COMMAND_Q0100 INPUT

MODULE trans_from_dynp INPUT.
MOVE-CORRESPONDING sdyn_conn TO wa_sflight.

ENDMODULE . " trans_from_dynp INPUT

MODULE read_sflight INPUT.
SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn_conn FROM sflight
WHERE carrid = sdyn_conn-carrid
AND connid = sdyn_conn-connid
AND fldate = sdyn_conn-fldate.
IF sy-subrc NE O.
MESSAGE e038.
ENDIF.

ENDMODULE . " read_sflight INPUT

MODULE exit INPUT.
CASE ok_code.
WHEN "EXIT’.
LEAVE PROGRAM.
WHEN " CANCEL’ .
CLEAR: sdyn_conn, saplane, wa_sflight.
SET PARAMETER ID: ’'CAR’ FIELD space,
"CON’ FIELD space,
"DAY’ FIELD space.
LEAVE TO SCREEN 100.
ENDCASE.

ENDMODULE . " exit INPUT

(C) SAP AG BC410 6-40

MODULE check_planetype INPUT.
SELECT SINGLE seatsmax INTO sdyn_conn-seatsmax FROM saplane
WHERE planetype = sdyn_conn-planetype.
CHECK sdyn_conn-seatsmax < sdyn_conn-seatsocc.
MESSAGE e109.
ENDMODULE . " check_planetype INPUT

(C) SAP AG BC410 6-41

Screen Elements: Table Controls HV
SAH

Contents:

Table controls: overview
Creating a table control

Processing a table control

Further techniques

© SAP AG 2002

(C) SAP AG BC410

7-1

Table Controls: Unit Objectives

At the conclusion of this unit, you will be able to:

® Display the contents of an internal table in a table
control and implement special table control
functions.

I

© SAP AG 2002

(C) SAP AG BC410 7-2

Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

Table Controls: Overview

, Table controls: overview

Creating table control

Processing table control

Further techniques

© SAP AG 2002

(C) SAP AG BC410 7-4

Table Controls

Displaying large amounts
of data in a table

® Can be configured by the user

® Allows you to change several
lines of a table at the same time

© SAP AG 1999

m A table control is an area on the screen in which the system displays data in tabular form. It is processed
using a loop. The top line of a table control is the header line, which is distinguished by a gray separator.

m Within a table control, you can use table elements, key words, templates, checkboxes, radio buttons,
radio button groups, and pushbuttons. A line may have up to 255 columns; each column may have a title.

(C) SAP AG BC410 7-5

Table Controls: Features

Select column(s)
Rearrange columns

\ \\
From To Dep. Arrival /

Change column width

Select -
line(s)

CJ/

Fixed leading

Automatic horizontal and
columns

vertical scrolling

© SAP AG 2002

®m You can display or enter single structured lines of data using a table control.
m Features:
e Resizable table for displaying and editing data
e The user or program can change the column width and position, save the changes, and reload them
later
Check column for marking lines; marked lines are highlighted in a different color
Line selection: single lines, multiple lines, all lines, and deselection
Column headings double as pushbuttons for marking columns
Scrollbars for horizontal and vertical scrolling
Any number of key (leading) columns can be set
Cell attributes are variable at run time

(C) SAP AG BC410 7-6

Table Controls: Table Settings

[Table Settings
Select variants

Current setting | Basic setting
Default setting | Basic setting

Variant administratio

Variants |
[Use as default setting

Create
] A Delete

|« OK | [Administrator | X

© SAP AG 2002

m Users can save display variants for table controls. Users can save these variants along with the basic
setting, as the current display setting or as the default display setting.

(C) SAP AG BC410 7-7

Use SAP Partner Only

Internal

Actions in Table Controls

© SAP AG 2002

m The table control contains a series of actions that are controlled entirely at the presentation server:
e Horizontal scrolling using the scrollbar in the table control

Swapping columns
Changing column widths
Selecting columns

e Selecting lines

m The PAI processing block is triggered when you scroll vertically in the table control or save the user

configuration.

(C) SAP AG

BC410

12ujied dVS 9sSMn |euiaju]

Ajug

Creating Table Controls

Table controls: overview

, Creating table control

Processing table control

Further techniques

© SAP AG 2002

(C) SAP AG BC410 7-9

Table Controls: Attributes

Attributes

General

e Name
e Start position
e Size
- Static
e Context menu

© SAP AG 2002

Table control

e Table type

e Configurable
- Configurable
- Resizing (v/h)

e Display

e Loop information
- SY-STEPL
- SY-LOOPC

m In addition to the normal Name, Start position on screen, and Static size attributes, table controls also

have special attributes.

m The special attributes determine the table type and display options for a table control, as well as whether
the table control can be configured by the user. The stepl and loopc fields of structure syst contain
information about the loop processing used with table controls (see the following graphics).

m Use Entry table as the table type if you are creating the table to enter data, if the table has at least one
field ready for input. Use Selection table if the table is only for selecting and transferring entries, or if

the table exists only in display mode.

m For more information about selection screens, refer to the online documentation (reference TAB-1).

(C) SAP AG

BC410 7-10

Use SAP Partner Only

Internal

Creating Table Controls

© SAP AG 1999

Table control area

Table control fields

B When you create a table control, you must create:

e A table control area
e Table control fields

(C) SAP AG

BC410

7-11

l1aujie g JVYS ©9SM |euiaju]

AjJug

Screen Painter

Layout Editor

Type TABLEVIEW corresponds to

the structure type CXTAB_CONTROL,
that contains a complex structure of
single fields and an internal table

ABAP
ek ok ok ok ok ok ok ok ok ok ok ok bk ok ok ok ok ke ok * ok kk

* INCLUDE xxxTOP &3
Kkkhkkhkhhkhkhhhkhkhkhhkkkhhkhhhhkkx Mk kxkk
3 CONTROLS: my control TYPE TABLEVIEW
USING SCREEN '0200'.

© SAP AG 2002

To create a table control area, choose the table control object from the object list in the Screen Painter
and place it in the screen work area. Fix the upper-left corner of the table control area and then drag the
object to the required size.

In the Name attribute, assign a name to your table control. In the ABAP program, declare a structure

with the same name, containing the dynamically changeable attributes of the table control.

The CONTROLS statement declares a complex data object with the type TABLEVIEW (corresponding

to the type CXTAB_CONTROL, declared in type group CXTAB in the ABAP Dictionary). At run time,

the data object (my_control) contains the static attributes of the table control.

B You maintain the initial values (static attributes) in the Screen Painter. The USING SCREEN addition in
the CONTROLS statement determines the screen whose initial values are to be used for the table
control.

B You can reset a table control to its initial attributes at any time using the statement REFRESH

CONTROL <ctrl> FROM SCREEN <scr> whereby <scr> does not have to be the same as the initial

screen of the table control.

(C) SAP AG BC410 7-12

Creating Table Controls: Fields

|
-
Screen Painter \
Layout Editor
Dict/Prog Fields | 1

\ . -

= 4
] v

Screen Painter: Dict/Program fields

Table/structure |SDYN_CONN
|Field name | Text Template /

[” FLDATE | Flight j'—lF"g'“ From __|To 'E’

[~ CITYFROM | From o

[T cITYTO |To / o =
4 |]

2 OK '3

© SAP AG 2002

®m You create fields in a table control using the Dict./Program fields function. This involves the following
steps:
* Enter the name of the structure whose fields you want to use in the table control and select Enter.
* In the field list, choose the fields that you want to use and choose OK.
¢ Click in the table control area. The system places all of the selected fields in the table control. If the

fields have data element texts, the system uses these as column headings.

m Alternatively, you can position individual input/output fields in the table control area. Each field

generates a single column.

(C) SAP AG BC410 7-13

Creating Table Controls: Selection Column

Screen Painter
— ___
Table Control Attributes __|[Flight | From To ||
J —
[sel. Col. [SDYN CONN-MARK ol
B

Dictionary; Structure: Display Fields

[SDYN_CONN Structure

Field name Type Length Short desc.
[MARK [CHAR | 1 |Sel. column

© SAP AG 2002

® When you create a table control, the system automatically proposes one with a selection column.
m The selection column behaves like a checkbox. It must, be a field with length one and data type CHAR.
You must enter the field name in the attributes of the table control.

m The selection column is a field of the structure used for transport between the screen and the ABAP
program.

(C) SAP AG BC410 7-14

Table Control Attributes at Runtime H’
SAF

Table control attributes

Attributes
General attributes of
‘ columns
A\
@nber of fixed columns @al table with these entries for
* Number of lines for vertical scrolling each column:
« Current line (within LOOP...ENDLOOP) * Column position (Display sequence)
* First moveable column displayed * Visible column width
« Line/Column selection * Indicators: Column selected
(none, single, multiple) \ Column invisible -
* Indicators: Line selection
Vertical scrollbars

\ Grid lines (v/h)

© SAP AG 2002

m The table control attributes, saved at run time in the structure that you declared in the CONTROLS
statement, can be divided into general attributes and column attributes.

m The general attributes contain information about the properties of the entire table control, such as the
number of fixed columns.

®m The column attributes are saved in an internal table (one entry for each column). Each column consists
of the attributes from the SCREEN structure, along with the column position, selection indicator,
visibility indicator, and visible width of the column.

m For further details about the names of the attributes and their precise meanings, see the ABAP keyword
documentation for the CONTROLS statement (choose Table control, then CXTAB_CONTROL), or the
online documentation TAB-1.

(C) SAP AG BC410 7-15

Table Control Attributes (Structure)

Table control attributes

COLS +
SCREEN INDEX SELECTED VISLENGTH INVISIBLE
\ J/
SCREEN
NAME GROUP1l ... GROUP4 REQUIRED INPUT OUTPUT INTENSIFIED

INVISIBLE LENGTH ACTIVE DISPLAY 3D VALUE_ HELP REQUEST

© SAP AG 1999

B You can change a table control dynamically by modifying the contents of the fields in the table control
structure declared in your program.

m The fields of the table control structure also provide information about user interaction with the table
control. For example, you can use the selected field to determine whether the user has selected a
particular column.

(C) SAP AG BC410 7-16

Processing a Table Control

© SAP AG 2002

Table controls: overview

Creating table control

Processing table control

Further techniques

(C) SAP AG

BC410

7-17

Processing a Table Control (Principle)

Database table ABAP program Screen
Internal table
I . ;
1
3
2 < 4
> PAI
5 E Next page
6
7
8 5
6
7
8

© SAP AG 2002

m For performance reasons, read the data for the table control once from the database and store it in an
internal table.
m The system fills the table control lines from this internal table.

(C) SAP AG BC410 7-18

Table Controls: Applications (Principle)

ABAP

Screen (with table control)
MODULE FILL ITAB OUTPUT.

IF wa spfli-carrid NE key scarr-carrid. §
— — PBO Painter
MOVE-CORRESPONDING wa_spfli TO key scarr. MODULE fill itab.
SELECT ... INTO TABLE itab spfli LOOP ...
WHERE

Read line by line into
the internal table

DESCRIBE TABLE itab spfli

LINES my control-lines. ENDLOOP.
ENDIF'. PAI
ENDMODULE . P
Update the internal table
line by line
ENDLOOP.

Scroll page by page
Change database table

© SAP AG 2002

Before you can display data from an internal table in a table control, you must first fill the table. Make
sure that you do not fill the internal table in every PBO event, but only when the key fields change (in
the above example, airline and flight number).

In order to process the table control, the system needs to know how far the user can scroll vertically (the
size of the internal table). You should, use the DESCRIBE TABLE statement to find out the number of
entries in the internal table and save this number in the lines field of the table control.

There is only one work area for processing lines in the table control. For this reason, you need a LOOP
... ENDLOQOP structure in both the PBO and PAI events for each table control.

In the PBO processing block, you must fill one line of the table control with the corresponding line from
the internal table in each loop pass.

Similarly, in the PAI processing block, you must pass the changes made in the table control back to the
correct line of the internal table.

When you process functions, you must distinguish between those that should apply only to individual
lines of a table control and those that should apply to the entire screen.

(C) SAP AG BC410 7-19

Filling a Table Control

o Screen 9

© SAP AG 2002

ABAP program

wa_spfli

LH 0400 ...

itab_spfli

LH 0400

wa_spfli

LH 2402 ..

itab_spfli

LH 2402 ..

Loop through the lines of the
table control on the screen

Read the corresponding
line for the internal table
in the work area
wa_spfli

Transport the contents of
the work area of the internal
table into the screen fields

m There are three steps involved in displaying buffered data from the internal table in the table control:
e The system loops through the lines of the table control on the screen. The lines of the screen table

are processed one by one.

- For each line, the system places the current line of the internal table in the work area of the

internal table.

- For each line, the system copies the data from the work area of the internal table to the relevant

line of the table control.

(C) SAP AG

BC410

7-20

Code: Filling a Table Control
Screen
PROCESS BEFORE OUTPUT. Painter o + e
LOOP AT itab_spfli INTO wa_spfli . .
WITH CONTROL my control. AUtomatlcaI_ly carried
MODULE move to_tc. out by loop in
ENDLOOP. the flow logic
ABAP
MODULE move to tc OUTPUT. 9
MOVE-CORRESPONDING wa_spfli]
TO sdyn conn. Programmed in ABAP
ENDMODULE .
@ Screen ABAP program Aytomatic transport
sdyn_conn
LH 0400 .. [LH o400 .. | j
2 wa_spfli 9
3 [LHos00.. | :l
4
itab_spfli 9
i 2
Fields from 5
sdyn_conn
© SAP AG 1999

m In the flow logic, the loop statement
LOOP AT <itab> INTO <wa_itab> WITH CONTROL <tc_name>
starts a loop through the screen table, and reads the line of the internal table corresponding to the current
line of the screen table, placing it in <wa_itab>.
<itab> is the name of the internal table containing the data, <wa_itab> is the name of the work area for
the internal table, and <tc_name> is the name of the table control on the screen.

m If the fields in your table control have the same structure and name as those in the work area <wa_itab>,
the system can transport data between the ABAP program and the screen automatically (step 3).

m [f you are not using the same structure for the table control fields and the work area of the internal table,
you must call a module between LOOP and ENDLOOP that moves the data from the work area
<wa_itab> into the screen fields (MOVE-CORRESPONDING <wa_itab> TO ...) .

®m The system calculates the value of <ctrl>-TOP_LINE when you scroll, but not when you scroll a page at
a time outside the table control.

(C) SAP AG BC410 7-21

Table Controls: Field Transport in the PBO H'

LOOPAT . < Airline [

Flight Dep. To [fF

MODULE output_1 SP 0400 | Frankfurt New :n
I || 0402 |Frankfurt [New

@ Transport ABAP

v
table control fields | <] >
to screen fields

v
ENDLOOP. &

—”@

MODULE output_2

Airline | LH

v Flight Dep. To |
- New A

Transport remaining 0400 Frankfurt New

@ ABAP fields to | 0402 |Frankfurt New
screen fields | 2407 Berlin San ¥
|« | >

© SAP AG 1999

® When you use table controls on a screen, the automatic field transport sequence changes.
m In the PBO processing block, data is transferred from the ABAP program to the screen after each loop
pass in the flow logic. The rest of the screen fields are filled, as normal, at the end of the PBO.

(C) SAP AG BC410 7-22

Changing the Contents of a Table Control

o Screen 9 ABAP program e

wa_spfli
LH 0402 ...])
LH 0407 ... itab_spfli

LH 2402 ... 0 Loop through the lines of the

table control on the screen

e Transport the contents of
the table line on the screen
into the work area
of the internal table

LH 0400 ...
LH 0402 ...
LH 0407 ...

wa_spfli

= e Transport the contents of
o dll LH 2402 .. the work area into the
itab_spfli corresponding line of
the internal table

© SAP AG 2002

m To transfer changed values from the table control back to the internal table, the following three steps
must be carried out:
¢ The system loops through the lines of the table control.
e For each line, the system copies the data from the current line of the table control to the fields with
identical names in the work area of the internal table.
e Transport of the contents of the work area into the corresponding line of the internal table must be
programmed.

(C) SAP AG BC410 7-23

Code: Changing the Contents of Table Control b”‘ h’

Screen
PROCESS AFTER INPUT. Painter o + e
LOOP AT itab spfli. . .
FIELD sdyn_conn-mark Automatically carried
MODULE modify itab ON REQUEST. out by loop in
ENBLOOEE the flow logic
. ABAP
MODULE modify itab INPUT.
MOVE-CORRESPONDING sdyn_conn + o
TO wa_spfli. .
MODIFY itab spfli FROM wa_spfli Programmed in ABAP
INDEX my control-current line.
ENDMODULE .
a Screen ABAP program

sdyn_conn
LH 0402 ..
LH 0407 ...
LH 2402 ...
itab_spfli O

2

© SAP AG 2002

m The LOOP AT <itab>. ... ENDLOOP block processes a loop through the lines of the table on the screen.

m If the fields on your screen have the same names as the fields in the internal table, you must return the
data from the work area of the internal table to the body of the table itself. You do this using the field
<control>-current_line.

m If the fields on your screen do not have the same names as the fields in the internal table, you must first
copy the data into the work area of the internal table. You can then copy the data back to the internal
table itself. You can also use the <control>-current_line field to do this.

(C) SAP AG BC410 7-24

Table Controls: Field Transport in the PAI

Transport all fields @
@ from the screen to the Airline | LH
ABAP fields except table . i
control fields and f1 Flight ' Dep. To
. 2 0400 Frankfurt New A
| MODULE input_1 |] 0402 Frankfurt New [~
LOOP AT | 2407 Berlin | San ¥
v = [«]_| > |
Transport table control Input field f1 HUGO
fields from screen to

@ ABARP fields

B
v
| MODULE i;put_z | Arling —
ENDLOOP. Flight = Dep. To |ff¥
v szl)_l 0400 |Frankfurt New | A
FIELD f1: Transport f1] 0402 |Frankfurt| New
from the screen to the _| 2407 Berlin San |¥
® ABAP field i S
| MODULE input_3 Input field 1 [AUGO (3)

© S/

m In the PAI processing block, all screen fields that do not belong to a table control and that are not listed
in a FIELD statement are transported back to the work fields in the ABAP program first.

m The contents of the table control are transported line by line to the corresponding work area in the ABAP
program in the appropriate loop.

®m As usual, the fields that occur in FIELD statements are transported directly before that statement.

(C) SAP AG BC410 7-25

Field Transports for Formatted Fields Hr
oL

Dictionary: Display Structure: Currency/Quantity Fields

SDYN_CONN

Automatic data
transport

S

Delayed
data transport
for the quantity

PRICE ' |CURR | SDYN_CONN CURRENCY

®

Screen
SDYN_CONN .
Painter
PROCESS AFTER INPUT.

CURRENCYlJPY PRICE| 1,000,000

LOOP. .. .
FIELD sdyn_conn-price.

CURRENCY|JPY PRICE 1,000,000 ENDLOOP.
TABLES sdyn_conn.

© SAP AG 2002

m A system program for currency amounts executes additional formatting for each currency during the
automatic data transport from the screen to ABAP. The program refers to the contents of the
corresponding reference field. The program also refers to the contents of the ABAP field. Errors occur
when the reference field does not contain the respective currency.

m The sequence of the data transport is dependent on the position of the fields on the screen. It is not
necessary to consider the exclusively technical aspects of the data transport, since the screen layout is
extremely user-friendly.

® You must ensure that in the flow logic programming, the fields are transported in the correct order. that
(the reference field’s followed by the amounts). To do this, delay the data transport of the quantity fields
using a corresponding FIELD statement.

(C) SAP AG BC410 7-26

Creating Table Controls Using the Wizard

Screen Painter
Layout Editor

© SAP AG 2002

®m You can use the Table Control Wizard to help you create table controls and insert them on screens in a
program. The Wizard guides you through the process. You can return to previous settings at any time.
Program objects are created on the final screen only on completion of the process. The Wizard creates
not only the table control but also the corresponding statements in the screen flow logic, together with
the relevant modules and subroutines and necessary data definitions. If necessary, programs or includes
are generated and concatenated using INCLUDE statements.

® You can also implement the scrolling function for the table control.

m All objects are placed in the inactive object list.

(C) SAP AG BC410 7-27

Table Controls: Further Techniques

Table controls: overview
Creating table control

Processing table control

, Further techniques

© SAP AG 2002

(C) SAP AG BC410 7-28

Changing Table Control H’
DA

o Permanent changes: You can carry out changes to the table
control structure at any point in the program flow.

o Temporary changes: You must carry out changes between
LOOP and ENDLOOP in the flow logic of the subscreen container.

PROCESS BEFORE OUTPUT. Change attributes

_y of the entire o
MODULE ctrl modify 1. — | table control

LOOP AT itab INTO sdyn conn
WITH CONTROL ...

MODULE modify screen. \ Change attributes
ENDLOOP. ~ of fields in
table control
PROCESS AFTER INPUT. temporarily

LOOP AT itab INTO sdyn conn.

5o Change attributes
ENDLOOP. of the entire o

S / table control
C.reen MODULE ctrl modify 2.
Painter = -

© SAP AG 2002

B You can modify the attributes of a table control by overwriting the field contents of the structure created
in the CONTROLS statement.

m To change the attributes of individual cells temporarily, change the SCREEN table in a PBO module
that you process between LOOP and ENDLOOP in the flow logic (LOOP AT SCREEN, MODIFY
SCREEN).

m In the LOOP, the runtime system initializes the attributes set statically for the table control in the Screen
Painter. You can change these attributes only in a module called from a LOOP through the table control.

(C) SAP AG BC410 7-29

Changing the Attributes of Table Control (1)

Screen

Table control attributes PAI or PBO. Painter

Gen, attributes

Col. attributes

FIELD dyn col num
MODULE change_ table control 1

mE==— on ragoEst

ABAP

MODULE change table control 1

my control-fixed cols
h = dyn col num.
¥ _dyn_col_num |3 ENDMODULE .

i

A
i

[0
[

| D |

© SAP AG 1999

®m You can change a table control dynamically by modifying the contents of the fields of its structure.
B You can use the selected field to determine whether the user has selected a particular column.

(C) SAP AG BC410 7-30

Changing the Attributes of Table Control (2)

Table control attributes

Gen. attributes Col. attributes

|

1] |
1 1]
1 1]
T 1 1
L
4

Screen

Painter

PBO or PAI

COLsS
SCREEN-

. INTENSIFIED INDEX ...

N
< T >

© SAP AG 2002

\I MODULE change_table_control_2.

ABAP

DATA wa LIKE LINE OF my control-cols.

MODULE change table control 2
IF wa-index BETWEEN 1 AND 3.
wa-screen-intensified = 1.
ELSE.
wa-screen-intensified = 0.
ENDIF'.
MODIFY my control-cols FROM wa.
ENDLOOP.
ENDMODULE .

m If you want to change the attributes of the columns in a table control, you must change the respective
entries in the <control>-cols table. Note that the table has no header lines. This means that you have to

create an explicit work area.

m The fields of the table control structure also provide information about user interaction with the table
control. For example, you can use the selected field to determine whether the user has selected a

particular column.

(C) SAP AG

BC410 7-31

Table Controls: Field Attributes

0400 Frankfurt New Yo

0?2 Frankfurt NEWYO‘

‘ 2407 Berlin S Fra‘
| |

System table SCREEN
NAME INP. OUT.

— ...-connid 0|1 <+
...-cityfrom | 1 | 1 <
...-Cityto 0| 1 <+

CONTROLS my control TYPE TABLEVIEW ...

HEEEE ==

© SAP AG 2002

m During the loop processing of the table control at PBO, a system program copies some of the column
attributes from the table control structure to the SCREEN system table. The program copies the parts of
the COLS line structure that are also called SCREEN-<fname>. Attributes are copied for all fields of a
table control line.

m Each line displayed in the table control is copied (number of lines dependent on the current screen size).

(C) SAP AG BC410 7-32

Table Controls: Changing Field Attributes

Temporaril

Screen table for line: Screen
Painter

Name Input Output Intensified ... (PILOOP AT itab INTO sdyn conn.
MODULE modify screen.
Colf

Col2
ABAP
(— 2 ‘> MODULE modify screen OUTPUT.
v CHECK wa_spfli-mark = 'X'.
2
IF screen-groupl = 'SEL'.
Bl i . ST

A screen-intensified = 1.

i ENDIF.

1 T Ig lj MODIFY SCREEN.
L | _| ¥ ENDLOOP .
4| >|J
ENDMODULE .

© SAP AG 2002

m [t is possible to change the attributes of table control fields temporarily. These changes are effective only
while the current screen is being processed.

m To change attributes temporarily, you call a module from within the table control loop in the flow logic,
in which you change the attributes of the current line.

m To change the attributes of the fields of a line in the table control, use a LOOP AT SCREEN. ...
ENDLOORP. block to loop through the fields of the current line. Within this loop, you can change the
attributes of the fields of the current line of the table control.

(C) SAP AG BC410 7-33

Sorting Table Controls: Example

CONTROLS my control TYPE TABLEVIEW
USING SCREEN 200.
DATA wa LIKE LINE OF my control-cols.

MODULE [PECYaets i Et e JPLov] INPUT. Find out

CASE ok_code. e
WHEN 'SRTU'.
READ TABLE my control-cols
WITH KEY selected = 'X' INTO wa.
IF sy-subrc = 0.

Sort
SORT itab BY JUICGIela-1etleti R AN0D] |

ELSE. ascending
MESSAGE i055 (bc410) .
ENDIE. Column
ENDCASE . chosen?
ENDMODULE .

© SAP AG 2002

B You can easily sort the table control display by a particular column using the table control attributes,
<wa_cols>-selected and <wa_cols>-screen-name.

B You can define the sort criteria using string processing. Ensure that the <wa_cols>-screen-name field
contains the name of the screen field and not the column name of the internal table.

(C) SAP AG BC410 7-34

Table Controls: Cursor Position (Example)

Determining the cursor position:
Which line of the internal table corresponds
to a line in the table control?

GET CURSOR

FIEID £
VALUE v ABAP

LINE 1

G o DATA: selline TYPE [Bimacosl,

tabix TYPE sy-tabix.

SET CURSOR
FIEILD f GET CURSOR LINE selline.
LINE 1 tabix = my control-TOP_LINE
OFFSET o. + selline - 1.
READ TABLE spfli itab
INDEX tabix.

© SAP AG 2002

The LINE parameter in the GET or SET statement refers to the sy-stepl system field, the special loop
index in the flow logic.
You calculate the internal table line that corresponds to the selected table control line as follows:
line = <ctrl>-top_line + cursor position - 1.
The GET CURSOR statement sets the return code as follows: sy-subrc = O: cursor was on a field,sy-
subrc = 4: cursor was not on a field.
m If you use a table control on your screen, you can place the cursor on a particular element within the
table control. To do this, use the LINE parameter and enter the line on which the cursor should be
positioned:

SET CURSOR FIELD <field_name> LINE <line>.
You can also use the OFFSET and LINE parameters together.

(C) SAP AG BC410 7-35

Table Controls: Unit Summary H’
SAF

. You are now able to:

® Display the contents of an internal table in a table
control and implement special table control
functions.

© SAP AG 2002

(C) SAP AG BC410 7-36

*e®

D,

7-1

Exercises

Unit: Table Controls

Topic: Creating a table control

At the conclusion of these exercises, you will be able to:

e Use a table control and its processing logic in your program .

On the third page of your tabstrip control, create a table control in which you
can maintain bookings for your flight.

On the third page of your tabstrip control, create a table control containing the booking
information for a flight.

7-1-1

Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise (or copy the model solution SAPMBC410ASUBS_TABSTRIP). You
can use the model solution SAPMBC410ATABS TABLE_CONTROL1 for
orientation.

Table Control Area:
On subscreen screen 130, create a table control with the following attributes:

Table control | Name: Attributes:

MY TABLE_CONTROL | Vertical and horizontal
Resizing: ON

Vertical and horizontal
Separators: ON

Column selection: SINGLE
Line selection: MULTIPLE
Column title: ON
Configurable: ON
Selection column:
SDYN_BOOK-MARK

No. of fixed columns: 2

(C) SAP AG

BC410 7-37

7-1-3

7-1-4

7-1-5

Note: You cannot set the number of fixed columns attribute for the table control
until you have created all of its columns. In the TOP include, create a complex
data object for the attributes of your table control: CONTROLS :
MY_TABLE_CON. . .

Create table control columns: In your table control, create the following
structure fields as columns:

Input/output SDYN_BOOK Attributes:
field - BOOKID Input: OFF
Text field - CUSTOMID Output: ON
(in table - CUSTTYPE
control) - SMOKER

- LUGGWEIGHT
- WUNIT

- INVOICE

- CLASS

- FORCURAM

- FORCURKEY

- LOCCURAM

- LOCCURKEY

- ORDER_DATE
- COUNTER

- AGENCYNUM

Now enter the number of fixed columns in the table control attributes.

Declaration for an internal table: In the TOP include of your program, create
an internal table IT _SDYN_ BOOK. This will buffer the bookings that you are
going to display in the table control. Create the internal table with type
STANDARD and no header line. Declare a suitable work area for the internal
table. Use the line type SDYN BOOK to declare both the internal table and the
work area.

Data retrieval: In the flow logic of screen 130, create a PBO module in which
you read all of the bookings for the flight selected that have not been canceled.
Read SBOOK table only if the user enters different flight data on screen 100.
The LINES field in your table control requires the number of lines in your
internal table. To find out the value, use the DESCRIBE TABLE

statement.

(C) SAP AG

BC410 7-38

7-2

7-1-6 Implement a table control: Program a loop for the table control in both the
PBO and PAI events of screen 130 (read the entries in the internal table in the
flow logic): LOOP ENDLOOP. In the PBO loop, call a module to copy
data from the work area of the internal table into the screen fields. In the PAI
loop, call a module to copy the data from the screen into the internal table. The
module should be called only for lines that have been selected on the screen
(FIELD ... MODULE ... ON REQUEST.).

Note: You can test whether your changes (selected lines) are properly adopted
by selecting a line and then scrolling down and back up within the table control.
If the selected entry is still selected after you have scrolled, your changes have
been copied correctly from the internal table to the table control.

Implement functions for canceling a booking, selecting all unmarked table control
lines, and deselecting all marked table control lines.

7-2-1 Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise (or copy the model solution
SAPMBC410ATABS_TABLE_CONTROL1). You can use the model
solution SAPMBC410ATABS_TABLE_CONTROL2 for orientation.

7-2-2 Create pushbuttons: Create the following pushbuttons on screen 130:

Pushbutton Name: Function code: SELE
SELECT_ALL Function type: <blank>
Icon: ICON_SELECT_ALL
Pushbutton Name: Function code: DSELE
DESELECT_ALL Function type: <blank>
Icon:
ICON_DESELECT_ALL
Pushbutton Name: Function code: DELE
P_DELETE Function type: <blank>
Icon: ICON_DELETE_ROW
Input: OFF
Output: OFF
Invisible: ON

(C) SAP AG

BC410 7-39

7-3

7-2-3

7-2-4

Implement the function code: Extend the OK_CODE processing for screen 130
to implement a cancellation function. The pushbutton for canceling a booking
should appear only if the user is in Maintain bookings mode. To do this, create
a PBO module for screen 130 in which you change the attributes of pushbutton
P_DELETE at runtime (LOOP AT SCREEN .. .). Ensure that the function
code for the Maintain bookings checkbox is set to trigger PAIL

Encapsulate the cancellations of bookings in a subroutine. Create a new internal
table IT SBOOK _UPD of type STANDARD and a corresponding work area
locally in the subroutine. Use the line type SBOOK to declare both the internal
table and the work area. Copy the selected data records from internal table

IT SDYN BOOK to internal table IT _SBOOK UPD. Set the flag to X. Pass
both internal tables to the function module BC_GLOBAL UPDATE_BOOK.

The function module makes the database changes for table SBOOK and the
resulting changes in table SFLIGHT. Display the screen again once the flight
has been canceled. Ensure that the bookings have changed, and that the internal
table IT SDYN BOOK is read from the database again before it is displayed.

Extend the command field processing of screen 130 to include the Select all and
Deselect all functions.

In the table control, implement the function Sort.

7-3-1

7-3-2

Extend your program SAPMZ##BC410_SOLUTION from the previous
exercise (or copy the model solution
SAPMBC410ATABS_TABLE_CONTROL?2). You can use the model
solution SAPMBC410ATABS_TABLE_CONTROLS3 for orientation.

Sort table control: To implement sorting data in a table control according to a
selected column you must carry out the following:

Create pushbuttons: On screen 130, create the following pushbuttons:

Pushbutton Name: Function code: SRTU
P_SRTU Function type: <blank>
Icon: ICON_SORT_UP
Pushbutton Name: Function code: SRTD
P_SRTD Function type: <blank>
Icon: ICON_SORT DOWN

(C) SAP AG

BC410 7-40

7-3-3 Implement functions: Extend the command field processing for screen 130 to

implement the two sort functions. Use the table control structure

MY TABLE_ CONTROL to find out the column in the table control selected by
the user. You will need to write a loop for the internal table

MY TABLE CONTROL-COLS. This means that you will also need a work area
for MY TABLE CONTROL-COLS. Create this in the TOP include of your
program (suggested name: WA _COLS) . Use the fields

MY TABLE CONTROL-COLS-SELECTED and WA _COLS-SCREEN-NAME
to find out the name of the column selected by the user. Since the field

WA _COLS-SCREEN-NAME contains the name of the screen field
(SDYN_BOOK-<fname>), you will need to find out the field name using an
offset specification. Sort the internal table containing the data for the table
control by the selected field in the chosen direction.

(C) SAP AG

BC410 7-41

Unit: Table Controls

Topic: Creating a table control

Solutions

1-1 Model solution SAPMBC410ATABS TABLE CONTROL1

Extend the sections in bold and create corresponding new modules (using forward navigation).

Top include

PROGRAM sapmbc4l0tabs_table_controll MESSAGE-ID bc410

CONTROLS my table control TYPE TABLEVIEW USING SCREEN 130.

TABLES sdyn_book.

DATA: wa_sdyn book TYPE sdyn book,
it_sdyn_book LIKE TABLE OF wa_sdyn_book.

CONTROLS my_tabstrip TYPE TABSTRIP.

DATA dynnr TYPE sy-dynnr.

TABLES saplane.

TABLES sdyn_conn.

DATA: BEGIN OF mode,
view VALUE ’'X’, "selected
maintain_flights,
maintain_bookings,

END OF mode.

DATA ok_code TYPE sy—-ucomm.

"#EC NEEDED

(C) SAP AG BC410

7-42

DATA wa_sflight TYPE sflight.

DATA: wa_sbook TYPE sbook,

it_sbook LIKE TABLE OF wa_sbook.

CONSTANTS not_cancelled VALUE space.

Subroutine include

FORM update_sflight.
UPDATE sflight FROM wa_sflight.
IF sy-subrc NE O.
MESSAGE a008.
ENDIF'.
MESSAGE s009.

ENDFORM. " update_sflight

Flow logic screen 100

PROCESS BEFORE OUTPUT.
MODULE status_0100.
MODULE modify_screen.
MODULE fill_dynnr.
CALL SUBSCREEN sub INCLUDING sy-cprog dynnr.
MODULE clear_ok_code.
*
PROCESS AFTER INPUT.
MODULE exit AT EXIT-COMMAND.
CALL SUBSCREEN sub.
CHAIN.
FIELD: sdyn_conn-carrid,
sdyn_conn-connid,
sdyn_conn-fldate MODULE read_sflight ON CHAIN-REQUEST.
ENDCHAIN.
CHAIN.

FIELD: sdyn_conn-planetype,

sdyn_conn—-seatsmax MODULE check_planetype ON CHAIN-REQUEST.

ENDCHAIN.

(C) SAP AG BC410

7-43

MODULE trans_from_dynp.

MODULE user_command_0100.

Flow logic screen 110

No changes are necessary.

Flow logic screen 120
No changes are necessary.
Flow logic screen 130

PROCESS BEFORE OUTPUT.

MODULE get_sbook.

LOOP AT it_sdyn book INTO wa_sdyn book WITH CONTROL my table control.

MODULE trans_to_tc.
ENDLOOP.

PROCESS AFTER INPUT.
LOOP AT it_sdyn book.
FIELD sdyn book-mark
MODULE trans_from_tc ON REQUEST.

ENDLOOP.

PBO module include

MODULE status_0100 OUTPUT.
SET PF-STATUS ’STATUS_100".
SET TITLEBAR 'TITLE_100".

ENDMODULE . "

MODULE clear_ok_code OUTPUT.
CLEAR ok_code.

ENDMODULE . "

STATUS_0100 OUTPUT

clear_ok_code OUTPUT

(C) SAP AG BC410

7-44

MODULE modify_screen OUTPUT.

CHECK NOT mode-maintain_flights IS INITIAL.

LOOP AT SCREEN.

IF screen—-name = ’SDYN_CONN-PLANETYPE' .
screen—-input = 1.
screen-required = 1.

MODIFY SCREEN.
ENDIEF.
ENDLOOP.

ENDMODULE .

MODULE get_spfli OUTPUT.

" modify_screen

ON CHANGE OF wa_sflight-carrid OR wa_sflight-connid.

SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn_conn FROM spfli

WHERE carrid = wa_sflight-carrid

AND connid = wa_sflight-connid.

ENDON.

ENDMODULE .

MODULE get_saplane OUTPUT.

ON CHANGE OF wa_sflight-planetype.

SELECT SINGLE * FROM saplane WHERE planetype = wa_sflight-planetype.

ENDON.

ENDMODULE .

MODULE fill_dynnr OUTPUT.
CASE my_tabstrip-activetab.

WHEN "FC1’.
dynnr = 110.

WHEN ’FC2’.
dynnr = 120.

WHEN "FC3’.
dynnr = 130.

WHEN OTHERS.
my_tabstrip-activetab = 'FCl’.
dynnr = 110.

ENDCASE.

ENDMODULE .

" GET_SPFLI

" GET_SAPLANE

" set_dynnr

OUTPUT

OUTPUT

OUTPUT

OUTPUT

(C) SAP AG

BC410

7-45

MODULE get_sbook OUTPUT.
IF wa_sflight-carrid <> sdyn book-carrid OR
wa_sflight-connid <> sdyn book-connid OR
wa_sflight-fldate <> sdyn book-fldate.

SELECT * FROM sbook INTO CORRESPONDING FIELDS OF TABLE it sdyn book
WHERE carrid = wa_sflight-carrid
AND connid = wa_sflight-connid

AND fldate

wa_sflight-fldate

AND cancelled = not_cancelled.

DESCRIBE TABLE it _sdyn book LINES my table control-lines.
ENDIF.
ENDMODULE . " get_sbook OUTPUT

MODULE trans_to_tc OUTPUT.
MOVE wa_sdyn book TO sdyn book.
ENDMODULE . " trans_to_dynp OUTPUT

PAI module include

MODULE user_command_0100 INPUT.
CASE ok_code.
WHEN "FC1’” OR ’'FC2’ OR 'FC3'.
my_tabstrip-activetab = ok_code.
WHEN " SAVE’ .
PERFORM update_sflight.
WHEN ’"BACK’ .
LEAVE TO SCREEN 0.
ENDCASE.
ENDMODULE . " USER_COMMAND_0100 INPUT

MODULE trans_from_dynp INPUT.
MOVE-CORRESPONDING sdyn_conn TO wa_sflight.

ENDMODULE . " trans_from_dynp INPUT

(C) SAP AG BC410 7-46

MODULE read_sflight INPUT.
SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn_conn FROM sflight
WHERE carrid = sdyn_conn-carrid
AND connid = sdyn_conn-connid
AND fldate = sdyn_conn-fldate.
IF sy-subrc NE 0.
MESSAGE e038.
ENDIF.
ENDMODULE . " check_sflight INPUT

MODULE exit INPUT.
CASE ok_code.
WHEN "EXIT’.
LEAVE PROGRAM.
WHEN " CANCEL’ .
CLEAR: sdyn_conn, saplane, wa_sflight.
SET PARAMETER ID: ’'CAR’ FIELD space,
"CON’" FIELD space,
"DAY’ FIELD space.
LEAVE TO SCREEN 100.
ENDCASE.

ENDMODULE . " exit INPUT

MODULE check_planetype INPUT.
SELECT SINGLE seatsmax INTO sdyn_conn-seatsmax FROM saplane
WHERE planetype = sdyn_conn-planetype.
CHECK sdyn_conn—-seatsmax < sdyn_conn-seatsocc.
MESSAGE e109.

ENDMODULE . " check_planetype INPUT

MODULE trans_from tc INPUT.
MOVE sdyn book-mark TO wa_sdyn book-mark.
MODIFY it sdyn book INDEX my_ table_control-current line
FROM wa_sdyn book TRANSPORTING mark.

ENDMODULE . " trans_from_tc INPUT

(C) SAP AG BC410 7-47

1-2 Model solution SAPMBC410ATABS_TABLE_CONTROL2

Extend the sections in bold and create corresponding new modules (using forward navigation).

Top include

Insert the following code

DATA bookings_changed.

Subroutine include
Insert the following subroutine in your include.

FORM cancel bookings.
DATA: wa_sbook_upd TYPE sbook,
it_sbook upd LIKE TABLE OF wa_sbook upd.
CONSTANTS cancelled VALUE 'X'.

LOOP AT it_sdyn book INTO wa_sdyn book WHERE mark = 'X'.
MOVE-CORRESPONDING wa_sdyn book TO wa_sbook upd.
MOVE cancelled TO wa_sbook upd-cancelled.
APPEND wa_sbook_upd TO it_sbook_upd.

ENDLOOP.

CALL FUNCTION 'BC_GLOBAL UPDATE_BOOK'
TABLES
booking_ tab

it _sdyn_book
booking tab upd = it sbook_upd.

MESSAGE s009.

bookings_changed = 'X'.

ENDFORM.

Flow logic screen 100

No changes are necessary.

Flow logic screen 110

No changes are necessary.

(C) SAP AG BC410

7-48

Flow logic screen 120

No changes are necessary.

Flow logic screen 130

PROCESS BEFORE OUTPUT.
MODULE get_sbook.
MODULE modify screen_ 130.
LOOP AT it_sdyn_book INTO wa_sdyn_book WITH CONTROL my_table_control.
MODULE trans_to_tc.
ENDLOOP.
PROCESS AFTER INPUT.
LOOP AT it_sdyn_)book.
FIELD sdyn_book—-mark
MODULE trans_from_tc ON REQUEST.

ENDLOOP.

MODULE user_ command 0130.

PBO module include

Insert the following code in your include.

MODULE get_sbook OUTPUT.

IF wa_sflight-carrid <> sdyn_book-carrid OR
wa_sflight-connid <> sdyn_book-connid OR
wa_sflight-fldate <> sdyn_book-fldate OR
bookings_changed = 'X'.

CLEAR bookings_changed.

SELECT * FROM sbook INTO CORRESPONDING FIELDS OF TABLE it_sdyn_book
WHERE carrid = wa_sflight-carrid
AND connid = wa_sflight-connid
AND fldate = wa_sflight-fldate

AND cancelled = not_cancelled.

DESCRIBE TABLE it_sdyn_book LINES my_table_control-lines.
ENDIF .
ENDMODULE . " get_sbook OUTPUT

(C) SAP AG BC410 7-49

MODULE modify screen 130 OUTPUT.
CHECK NOT mode-maintain bookings IS INITIAL.
LOOP AT SCREEN.

IF screen—-name = 'P _DELETE'.
screen-invisible = 0.
MODIFY SCREEN.
ENDIF.
ENDLOOP.
ENDMODULE . " modify screen_130 OUTPUT
PAI module include

Implement the command field processing for screen 130.

MODULE user_command 0130 INPUT.
CASE ok_code.
WHEN 'DELE’'.

READ TABLE it_sdyn_book INTO wa_sdyn book WITH KEY mark = 'X'
TRANSPORTING NO FIELDS.
IF sy-subrc = 0.
PERFORM cancel bookings.
ENDIF.
WHEN 'SELE'.
LOOP AT it_sdyn book INTO wa_sdyn book WHERE mark = space.
wa_sdyn _book-mark = 'X'.
MODIFY it _sdyn book FROM wa_sdyn book TRANSPORTING mark.
ENDLOOP.
WHEN 'DSELE'.
LOOP AT it sdyn book INTO wa_sdyn book WHERE mark = 'X'.
wa_sdyn_book-mark = space.
MODIFY it sdyn book FROM wa_sdyn_book TRANSPORTING mark.
ENDLOOP.
ENDCASE .
ENDMODULE . " user_ command 0130 INPUT

(C) SAP AG BC410

7-50

1-3 Model solution SAPMBC410ATABS_TABLE_CONTROLS3

Extend the sections in bold and create corresponding new modules (using forward navigation).

Subroutine include

No changes are necessary.

Flow logic screen 100

No changes are necessary.

Flow logic screen 110

No changes are necessary.

Flow logic screen 120

No changes are necessary.

Flow logic screen 130

No changes are necessary.

PBO module include

No changes are necessary.

PAI module include

Implement the table control functions in the module user_command_130.

MODULE user_command_0130 INPUT.
CASE ok_code.
WHEN 'SRTU'.
READ TABLE my_ table control-cols INTO wa_cols
WITH KEY selected = 'X'.
IF sy-subrc = 0.
SORT it _sdyn book BY (wa_cols-screen-name+10) ASCENDING.
ENDIF.
WHEN 'SRTD'.
READ TABLE my_ table control-cols INTO wa_cols
WITH KEY selected = 'X'.

IF sy-subrc = 0.

(C) SAP AG BC410 7-51

SORT it_sdyn book BY (wa_cols-screen-name+10) DESCENDING.
ENDIF.

WHEN ’DELE’ .

READ TABLE it_sdyn_book INTO wa_sdyn_book WITH KEY mark = ’'X’.

IF sy-subrc = 0.
PERFORM cancel_bookings.
ENDIF.

WHEN ’SELE’ .
LOOP AT it_sdyn_book INTO wa_sdyn_book WHERE mark = space.
wa_sdyn_book-mark = "X’.
MODIFY it_sdyn_book FROM wa_sdyn_book TRANSPORTING mark.
ENDLOOP.
WHEN ’DSELE’ .
LOOP AT it_sdyn_book INTO wa_sdyn_book WHERE mark = ’'X’.
wa_sdyn_book-mark = space.
MODIFY it_sdyn_book FROM wa_sdyn_book TRANSPORTING mark.
ENDLOOP.
ENDCASE.

ENDMODULE . " user_command_0130 INPUT

(C) SAP AG BC410

7-52

Context Menus FV
SAF

© SAl

Contents:

® Creating, using, and modifying context menus

P AG 1999

(C) SAP AG

BC410

8-1

Unit Objectives !'
DA

At the conclusion of this unit, you will be able to:

® Use context menus in your programs.

© SAP AG 2002

(C) SAP AG BC410

8-2

Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

. ‘dl

Screen: Area of encapsulation of a context menu

List Edit Goto Extras Environment System Help SAP.

30 CeQ SHEB D0LD B @B

{ SAPR/3
EHE R
Screen area

Subscreen area

Box in the box
—— Area in the box

Elements without a menu

inherit the area menu

© SAP AG 2002

m Context menus (available with right mouse button or SHIFT-F10) are shortcuts for functions that are
frequently used.

m They can be used to display context-sensitive menus. The context is defined by the position (cursor for
SHIFT-F10, mouse location for right mouse button) where the user called the context menu. The user
can select functions that are relevant for the current context using the context menu.

®m You define if a context menu should be offered when you create a screen object (screens, input fields,
table controls, boxes, and so on). When the user selects a context menu on an object, an event
mechanism (as understood by ABAP objects) calls a certain subroutine in the application program. This
delivers a menu reference to the subroutine. The program uses this menu reference to build the display
menu. Here you can use menus defined with the Menu Painter and dynamic menus.

m After the user executes a menu function, the application program regains control and can react to the
user input.

m Context menus are assigned to output fields. When you assign a context menu to a box, table control or
screen (normal or subscreen), all the subordinate output fields that do not have a context menu inherit
that one.

(C) SAP AG BC410 8-4

Creating a Context Menu

Object
v Ij <Program name> Navigator

@ Program object types

> Fields Create |
7 3 GUI Status .
BASE

BOOK
STATUS_100 Create Status

Status attributes

Short text ' Table Control Subscreen
Status type

Online status
Dialog box
* Context menu

© SAP AG 2002

B You can create a context menu from within the object list of the Object Navigator. Position the cursor on
GUI status and right-click. The Object Navigator automatically opens the Menu Painter.

B You can also create a context menu directly in the Menu Painter.

®m A context menu is a special GUI status. Assign it a name, a descriptive text, and status type Context
menu.

(C) SAP AG BC410 8-5

Use SAP Partner Only

Internal

Creating a Context Menu: Assignhing Functions

M, o PLEP | Context menu for the Table Control Subscreen

SRTD Descending
SRTU || Ascending

LIST [|Booking list

Function list

1= =] \

© SAP AG 2002

®m [n a context menu, you can link any function codes and function texts. In particular, you can take
advantage of your screen pushbuttons. The functions already provided in the interface can be used as an
F4 input help.
m The link technique ensures consistent context menus in large applications.
m You should observe the following rules when designing context menus.
* Do not use any functions that cannot be found elsewhere in the system. (pushbuttons or interface)
* Avoid using more than two hierarchy levels in context menus.
* Do not use more than 10 entries, but map all the available pushbuttons.
* Use separators to structure the context menu optically.
* Place object-specific statements at the beginning of the menu.

(C) SAP AG BC410 8-6

1dujie d dVS 2SN |euiajuij

Ajugp

Linking Screen Objects H’
AP

khkkkkhkkhkkkkkkkhkkhkhkkhkhkkhkkhkkhkhkhkkkkkkkkk

*** INCLUDE xxxFO1l *
hkkhkhkkkkhkhhkhkhkkhkkkkkhkkhkkkkkkk

Screen Painter

Element Attributes

Context Menu Form

FO on_ctmenu rbgframe
S

ING p_menu TYPE REF TO cl_ctmenu.

@MENU— RBGFRAME ENDFORM.

Screen Attributes

General Attributes

FO on_ctmenu subl30
I

NG p_menu TYPE REF TO cl_ctmenu.

Context Menu Form ENDFORM
¢ ON_CTMENU_ SUB130

ABAP |

© SAP AG 2002

m Right-clicking triggers a callback routine in your program. You must create the callback routine in your
application program. It is named ON_CTMENU_<name>. You determine which callback routine is
called in the Screen Painter, either in the screen attributes or in the general attributes of a screen element.

B You can directly assign a callback routine to input/output fields, text fields, and status icons.
Checkboxes, radio buttons, and pushbuttons do not have their own callback routines. However, these
fields can inherit context menus from boxes or screens.

m [f you assign a callback routine to a table control, it is triggered for all the fields of the table control that
do not have their own callback routine.

m The callback routine takes the following form:

FORM ON_CTMENU_<name> USING p_menu TYPE REF TO cl_ctmenu.
<definition of the context menu>.
ENDFORM.
B You create the structure of the context menu by loading a statically defined menu or by passing an
instance of the class cl_ctmenu with a method call.

(C) SAP AG BC410 8-7

Using the Context Menu

Right mouse
button

{

—7

—

FORM on_ctmenu_ subl30

USING p_menu TYPE REF TO cl_ctmenu.

CALL METHOD cl ctmenu=>load gui status
EXPORTING program = sy-cprog
status = 'SUB130'
menu = p_menu.

ENDFORM.
ABAP
© SAP AG 2002

m Right-clicking an output field triggers the corresponding callback routine.

B You can now use the static method load_gui_status of class cl_ctmenu to load a context menu that was
predefined in the Menu Painter. Using other methods of class cl_ctmenu (see next graphic), you can also
completely rebuild the context menu or modify a loaded menu.

m If the user triggers a function in the context menu, the corresponding function code is placed in the
command field and triggered depending on function type PAI of the screen.

(C) SAP AG BC410 8-8

Modifying Context Menus Dynamically

CALL METHOD <instance>-><name> EXPORTING ‘
Method Meaning
ADD_FUNCTION Add a function
ADD SEPARATOR Add a separator
HIDE FUNCTIONS Hide functions
SHOW_FUNCTIONS Show functions
DISABLE_FUNCTIONS Disable functions
ENABLE FUNCTIONS Enable functions
© SAP AG 2002

m Class cl_ctmenu provides a number of other methods in addition to the static method load_gui_status.
You can use them to adjust the context menu at run time (for example, using the values in data fields).

m The corresponding methods are called within the callback routine.

® You can find further information in the documentation for class cl_ctmenu in the Class Builder.

(C) SAP AG BC410 8-9

Context Menu: Unit Summary

. You are now able to:

® Use context menus in your programs.

© SAP AG 2002

(C) SAP AG BC410 8-10

Exercises

"—“ Unit: Context Menus

Topic: Creating and using a context menu - Optional

At the conclusion of these exercises, you will be able to:

e Use context menus in your programs.

Make the functions for your table control available in a context menu.

)2)

I-1 Create a GUI status with type context menu and use it for the output fields on screen
130

Extend your program SAPMZ##BC410_SOLUTION from the previous exercise (or
copy the model solution SAPMBC410ATABS TABLE_CONTROLS3). You can use
the model solution SAPMBC410ACONS_CONTEXTMENU for orientation.

1-2 Create the GUI status sub130 with type context menu and the short description Table
control subscreen. Assign the following functions to the menu:

Context menu | Function code: Function text:
DELE Delete bookings
SELE Select all
DSELE Deselect all
Separator
SRTU Sort in Ascending...
SRTD Sort in Descending...

Assign function type ' ' (space) to all of the functions. Deactivate the function DELE.

1-3 In the screen attributes of 130, declare that you want to use subroutine
on_ctmenu_sub130 to create the context menu.

(C) SAP AG BC410 8-11

1-4

1-5

Write the subroutine to create the context menu.

Optional:

Activate the DELE function at run time if the user is in booking maintenance mode.
Note that you must pass the function code to the method in a table with type
ui_functions.

(C) SAP AG

BC410 8-12

7

Solutions

Unit: Context Menus

Topic: Creating and using a context menu

1-1 Model solution SAPMBC410CONS_CONTEXTMENU

Add the coding in bold type to your program and create the subroutine.

Subroutine include

FORM on_ctmenu subl30 USING p menu TYPE REF TO cl_ctmenu.

DATA fcodes TYPE ui_functions.

CALL METHOD cl_ctmenu=>load gui_status

EXPORTING program = sy-cprog
status = 'SUB130'
menu = p_menu.

CHECK NOT mode-maintain bookings IS INITIAL.

APPEND 'DELE'

TO fcodes.

CALL METHOD p_menu->enable_ functions EXPORTING fcodes = fcodes.

ENDFORM.

" ON_CTMENU_SUB130

(C) SAP AG

BC410 8-13

Lists in Screen Programming HV
DA

Contents:

® Lists on screens

© SAP AG 1999

(C) SAP AG BC410

Lists in Screen Programming: Unit Objectives H'
DA

At the conclusion of this unit, you will be able to:

® Use lists on screens in your programs.

© SAP AG 2002

(C) SAP AG BC410

9-2

Overview Diagram

© SAP AG 2002

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7
Unit 8
Unit 9

Course Overview

Introduction to Screen Programming

The Program Interface

Screen Elements for Output

Screen Elements for Input/Output

Screen Elements: Subscreens and Tabstrip Controls
Screen Elements: Table Controls

Context Menus

Lists in Screen Programming

(C) SAP AG

BC410

Creating a List Buffer

PROCESS BEFORE OUTPUT. Ml

MODULE write_PBO .

PROCESS AFTER INPUT.

MODULE write PATI.

]

Screen

Painter

© SAP AG 2002

m Fill the corresponding basic list buffer with WRITE statements at PBO or PAIL You can create your own
list and column headers by programming an event TOP-OF-PAGE. This event will be triggered
whenever a new page is created in the list buffer with NEW-PAGE.

B You can send the output directly to the spool with the NEW-PAGE PRINT ON statement.

(C) SAP AG BC410 9.4

List Display at the Front End

SET SCREEN 300.

—

PBO/PAI (Screen 300)
LEAVE TO LIST-PROCESSING

CALL SCREEN 200.

PBO/PAI (Screen 100)
LEAVE TO LIST-PROCESSING

© SAP AG 1999

m There is no common list buffer outside of a CALL level.

m The list display is processed at the end of the screen in which LEAVE TO LIST-PROCESSING was
programmed at PBO or PAL

m To direct the output to the spool, use the NEW-PAGE PRINT ON statement, but not LEAVE TO LIST-
PROCESSING.

(C) SAP AG BC410 9-5

Displaying List on a Screen

MODULE <Module name>.
PBO PAI
(100) | = = (100 = \
F3

WRITE. ..SKIP...ULINE...
ENDMODULE . Screen 100

MODULE <Module name>.

LEAVE TO LIST-PROCESSING
AND RETURN TO SCREEN 300 . |Jly:[e] PAI
SET PF-STATUS SPACE. (100) = l- (100) =
1100
F3

ENDMODULE.

Screen 300

MODULE <Module name> OUTPUT
SUPPRESS DIALOG.

LEAVE TO LIST-PROCESSING. | PBO PAI |
SET PF-STATUS SPACE. (100) (100)

ENDMODULE .

© SAP AG 2002

To create a list that is displayed on a screen, use the ABAP statement LEAVE TO LIST-PROCESSING.

This sets a switch that ensures that the contents of the list buffer are output once the current screen has

been processed. The SET PF-STATUS SPACE statement ensures that the list is displayed with the

standard GUI status for lists.

®m Once the screen has been fully processed and LEAVE TO LIST- PROCESSING is executed, the list is
displayed on list screen 120 (screen for a basis program).

B You can also use the following format: LEAVE TO LIST-PROCESSING AND RETURN TO SCREEN

0. SET PF-STATUS SPACE. WRITE ... LEAVE SCREEN.

When the system exits list processing (user selects F3 or ABAP statement LEAVE LIST-

PROCESSING), the system carries on processing the PBO of the calling screen from which the list

processing was started. You can override this by using the AND RETURN TO SCREEN <scr> addition

in the LEAVE TO LIST-PROCESSING statement.

If you include the ABAP statement SUPPRESS DIALOG in a PBO module, the current screen is not

displayed.

(C) SAP AG BC410 9-6

Lists in Modal Dialog Boxes

ABAP
MODULE call INPUT.

CALL SCREEN[200 |

STARTING AT 20 10
ENDING AT 50 15.

ENDMODULE .

Dialog box

Screen
Painter

PROCESS BEFORE OUTPUT.
MODULE list.

ABAP
MODULE list OUTPUT.

SUPPRESS DIALOG.
LEAVE TO LIST-PROCESSING

AND RETURN TO SCREEN O.
SET PF-STATUS SPACE.

ENDMODULE .
© SAP AG 2002

m If you want to display a list in a dialog box within a transaction, you must call a screen, but include the
SUPPRESS DIALOG statement in its PBO processing block.

m In order to return to the calling screen when the user leaves the list, use the statement
LEAVE TO LIST-PROCESSING AND RETURN TO SCREEN 0.

(C) SAP AG BC410 9-7

Lists in Screen Programming: Unit Summary H'

. You are now able to:

® Use lists on screens in your programs

© SAP AG 1999

(C) SAP AG BC410 9-8

Exercises

\ Unit: Lists in Screen Programming

Topic: Displaying a list on a screen

At the conclusion of these exercises, you will be able to:

e Use lists on screens in your programs.

*e®

Extend your flight maintenance screen to display a booking list. Allow the
user to display the bookings by choosing a pushbutton or menu entry.

D,

Program the booking list.

1-1 Extend your program SAPMZ##BC410_SOLUTION from the previous exercise (or
copy the model solution SAPMBC410ACONS_CONTEXTMENU). Use the model
solution SAPMBC410ALISS_LISTS_ON_DYNPROS for orientation.

1-2 Write a subroutine display_bookings to display the data from the internal table
it_sbook. Display the following data:

Booking number (bookid),
Customer number (customid)
Customer type (custtype)
Luggage weight (luggweight)
Unit of weight (wunit)

Class (class)

Booking date (order_date).

1-3 Assign the function BOOK in status STATUS_100 to function key F5, and also to a
pushbutton and a menu entry.

1-4 Call screen 200 (STARTING AT...) if the user chooses the BOOK function. Create
the screen (type: Modal dialog box). In the PBO event of the screen, call a module in
which you create the list. Screen 200 is only a container. You should not actually
display it. Create a GUI title (T_BOOK) for the booking list. Set the GUI status
SPACE and GUI title T_BOOK and start list processing.

(C) SAP AG BC410 9-9

/ Unit: Lists in Screen Programming

Topic: Displaying a list on a screen

Solutions

Model solution SAPMBC410ALISS_LISTS_ON_DYNPROS

Add the coding in bold type to your program and create the module.

Flow logic screen 200

PROCESS BEFORE OUTPUT.

MODULE list.

*

PROCESS AFTER INPUT.

PBO module include
Add the coding in bold type to your include

MODULE status_0100 OUTPUT.
SET PF-STATUS ’STATUS_100'.
SET TITLEBAR 'TITLE_100".
ENDMODULE . " STATUS_0100 OUTPUT

MODULE clear_ok_code OUTPUT.
CLEAR ok_code.
ENDMODULE . " clear_ok_code OUTPUT

MODULE modify_screen OUTPUT.
CHECK NOT mode-maintain_flights IS INITIAL.
LOOP AT SCREEN.

IF screen—-name = ’'SDYN_CONN-PLANETYPE'.
screen—-input = 1.
screen-required = 1.

MODIFY SCREEN.

(C) SAP AG BC410

9-10

ENDIEF.
ENDLOOP.

ENDMODULE . " modify_screen OUTPUT

MODULE get_spfli OUTPUT.

ON CHANGE OF wa_sflight-carrid OR wa_sflight-connid.
SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn_conn FROM spfli

WHERE carrid = wa_sflight-carrid
AND connid = wa_sflight-connid.
ENDON.
ENDMODULE . " GET_SPFLI

MODULE get_saplane OUTPUT.
ON CHANGE OF wa_sflight-planetype.
SELECT SINGLE * FROM saplane WHERE planetype =
ENDON.

OUTPUT

wa_sflight-planetype.

ENDMODULE . " GET_SAPLANE OUTPUT

MODULE fill_dynnr OUTPUT.
CASE my_tabstrip-activetab.
WHEN "FC1’.
dynnr 110.
WHEN "FC2’.
dynnr = 120.
WHEN "FC3’.
dynnr 130.
WHEN OTHERS.
my_tabstrip-activetab = 'FCl’.
110.

dynnr
ENDCASE.
ENDMODULE . " set_dynnr

MODULE get_sbook OUTPUT.

IF wa_sflight-carrid <> sdyn_book-carrid OR
wa_sflight-connid <> sdyn_book-connid OR
wa_sflight-fldate <> sdyn_book-fldate OR
bookings_changed = ’"X’.

CLEAR bookings_changed.

OUTPUT

SELECT * FROM sbook INTO CORRESPONDING FIELDS OF TABLE it_sdyn_book

WHERE carrid = wa_sflight-carrid
AND connid wa_sflight-connid
AND fldate wa_sflight-fldate

AND cancelled = not_cancelled.

DESCRIBE TABLE it_sdyn_book LINES my_table_control-lines.

ENDIEF.

(C) SAP AG BC410

ENDMODULE . " get_sbook OUTPUT

MODULE trans_to_tc OUTPUT.
MOVE wa_sdyn_book TO sdyn_lbook.

ENDMODULE . " trans_to_dynp OUTPUT

MODULE modify_screen_130 OUTPUT.
CHECK NOT mode-maintain_bookings IS INITIAL.
LOOP AT SCREEN.

IF screen—-name = 'P_DELETE’.
screen—-invisible = 0.
MODIFY SCREEN.
ENDIF.
ENDLOOP.
ENDMODULE. " modify_screen_130

MODULE list OUTPUT.
SELECT * FROM sbook
INTO TABLE it _sbook
WHERE carrid = wa_sflight-carrid

AND connid = wa_sflight-connid
AND fldate wa_sflight-fldate
AND cancelled = space.
IF sy-dbent = 0.
MESSAGE il86.
ELSE.
PERFORM display bookings.
SET PF-STATUS space.
SET TITLEBAR 'T_BOOK'.
ENDIF.
LEAVE TO LIST-PROCESSING AND RETURN TO SCREEN O.
SUPPRESS DIALOG.

ENDMODULE . " LIST OUTPUT

Subroutines include
Add the coding in bold type to your include

FORM update_sflight.
UPDATE sflight FROM wa_sflight.
IF sy-subrc NE O.
MESSAGE a008.

* Fehler beim Andern
ENDIF.
MESSAGE s009.
ENDFORM. " update_sflight

OUTPUT

(C) SAP AG BC410

9-12

FORM cancel_bookings.
DATA: wa_sbook_upd TYPE sbook,
it_sbook_upd LIKE TABLE OF wa_sbook_upd.
CONSTANTS cancelled VALUE "X'.

LOOP AT it_sdyn_book INTO wa_sdyn_book WHERE mark = ’"X’.

MOVE-CORRESPONDING wa_sdyn_book TO wa_sbook_upd.
MOVE cancelled TO wa_sbook_upd-cancelled.
APPEND wa_sbook_upd TO it_sbook_upd.

ENDLOOP.

CALL FUNCTION ’'BC_GLOBAL_UPDATE_BOOK’
TABLES

booking_tab

it_sdyn_book

booking_tab_upd = it_sbook_upd.

MESSAGE s009.

ENDFORM.

" cancel_bookings

FORM on_ctmenu_subl30 USING p_menu TYPE REF TO cl_ctmenu.
DATA fcodes TYPE ui_functions.

CALL METHOD cl_ctmenu=>load_gui_status
EXPORTING program = Sy—-Cprog
status = ’S_SUB130’

menu = p_menu.

CHECK NOT mode-maintain_bookings IS INITIAL.
APPEND ’'DELE’ TO fcodes.
CALL METHOD p_menu->enable_functions EXPORTING fcodes =

ENDFORM.

FORM display bookings.
LOOP AT it sbook INTO wa_sbook.
WRITE: / wa_sbook-bookid,

ENDLOOP.
ENDFORM.

wa_sbook-customid,

wa_sbook-custtype,

" on_ctmenu_subl30

wa_sbook-luggweight UNIT wa_sbook-wunit,

wa_sbook-wunit,
wa_sbook-class,
wa_sbook-order date,

wa_sbook-cancelled.

" DISPLAY BOOKINGS

fcodes.

(C) SAP AG

BC410

9-13

© SAP AG 2002

This section contains supplementary
material to be used for reference.

® This material is not part of the standard course.

The instructor may not cover this material
during the course presentation.

(C) SAP AG

BC410

10-1

Personalizing Transactions: Objectives

At the conclusion of this topic, you will be able to:

® Create transaction variants that you can assign to
users using the above methods.

© SAP AG 2002

m There are ways to set single transactions to the needs of your enterprise or individual user groups. In this
unit, you will see how a transaction can be simplified without being modified.

(C) SAP AG BC410 10-2

Transaction Variants: Objectives H’
DA

® Simplify system by suppressing functions that are not
required:

® Predefine fields
® Revoke ready for input status

® Suppress screen elements that are not needed (fields,
subscreens, and screens)

® Different scope:
® System: Global fixed values

® Transaction: Transaction variants
Standard variants or individual variants

WYSIWYG maintenance with special recording function

© SAP AG 2002

(C) SAP AG BC410

10-3

Transaction Variants: Example

Program | Program

L

Program

Program

Occ. seats
Free seats

Price

Occ. seats
Free seats

Price

® Predefine fields with values
® Suppress fields
® Hide screens

© SAP AG 2002

m In this example, you see two screens of an SAP transaction that should be redesigned using a transaction
variant.

m Screen 100 is changed as follows: fields are hidden, field attributes are changed, and buttons are hidden.

m Screen 200 shows the following changes: buttons moved and screen inserted (with GuiXT). The use of
GuiXT will be discussed in more detail later.

(C) SAP AG BC410 10-4

Transaction Variants: Principle

liransacuoniVvamant

- . |
| Screen variant S -
ztest_0200 creen varian

ztest_0300

Screen variant
ztest_0100

© SAP AG 2002

m A transaction variant is a reference to a set of screen variants.
B You can create any number of screen variants for a screen. The transaction variant consists of these
screen variants.

(C) SAP AG BC410 10-5

Transaction Variants: Options:

— Stk sk ® A standard variant

or
® Any number of individual
R ransaction variants
variants . .
SAP ® Standard variant overrides
transaction SAP System transaction
HE S rAansaction ® Otherwise: variant
Varianisz transactions

AN SACTION,
Varants

© SAP AG 2002

B You can create different kinds of transaction variants for an SAP System transaction:
* A standard variant
* Any number of normal transaction variants

m The standard variant is executed at runtime instead of the SAP Systemdelivered transaction. No new
transaction code is required.

®m A normal transaction variant will be called with its own transaction code of type variant transaction.

(C) SAP AG BC410 10-6

Creating Transaction Variants

Transaction variants

B!

Transaction
name

Variant name

Create

® Tools = AcceleratedSAP
w Personalization ™ Transaction variants

© SAP AG 2002

m To create transaction variants, choose AcceleratedSAP - Personalization = Transaction variant. This
takes you to the transaction for maintaining transaction variants.

m Enter the name of the transaction for which you want to create a variant. The name of the variant must
be unique in the system and be in the customer namespace.

m With the menu option Goto, choose whether you want to create a client-specific or a cross-client
transaction variant.

m To create the variant, choose the appropriate button in the application toolbar.

(C) SAP AG BC410 10-7

Transaction Variants: Evaluating Fields

I DN DN N e e
Departure city | Frankfurt | [O L] O
Arrival city New York | [] Ll Ll O
Departure time O O L] L]
Button1 O O L] O
Button2 O] L] O

[Finish and save I Menu functionsj GuiXT | X

© SAP AG 2002

m Select Screen entries to start the transaction in CALL mode.

m Triggering a dialog also triggers Process After Input (PAI) of the current screen. The system sends
another screen in which you can evaluate the fields of the screen.

®m Online documentation provides further information about transaction variants.

m The screen that was evaluated is stored as a screen variant when you continue.

(C) SAP AG BC410 10-8

Screen Variants ”r
A

4
| Screen variant
L] I _% | name
]

L]

I D D N | N e

Departure city | Frankfurt]]] O inti
Arrival city New York | [O O O Descri pthn
Departure time] =] Ll

Button1 O] L] -]
Button2 O (O | O |3 Set field

attributes

« Finishand save | j° Menu functions | GuiXT X

Deactivate menu
functions

© SAP AG 2002

B A screen variant is an independent Repository object, which has a unique name in the system. The name
is constructed as follows:
* Variant name
* Client (only for client-specific transaction variants)
* Screen number
m Specify whether or not field contents should be copied to the screen variant. You can set various
attributes for the individual fields:
* You can undo or hide the input status of a field
* You can find a detailed list of options in the online documentation about transaction variants

(C) SAP AG BC410 10-9

Departure time Screen variant
Button1 .
maintenance screen

Button2

N

| Finish and save 1" Menu functions | GuiXT ¥

—’, Ay]]

¥ [E RO E B R E ® Script editor

® Script is stored as
text file

® Scripts can be
imported

v Screen files b4

© SAP AG 2002

m The GuiXT tool allows you to design the individual screens in a more flexible manner. GuiXT uses a
script language to:
¢ Position objects on the screen
* Set attributes
* Include new objects

m If you select GuiX, an editor window appears where you can enter the script. You can also choose
GuiXT files stored on your local machine.

B You can also import scripts created on the local machine and export them there.

(C) SAP AG BC410 10-10

GuiXT: Script Language

IMAGE (1,1) "C:\sap.Jjpg"

POS [Area] [Area]l+(10,0)

Pushbutton (10,50) "Text"

© SAP AG 2002

// Version: 19990921151118

BOX (10,20) (16,44) "Frame"

POS [Element] [Element]+(10,0)

"SCMP"

Comment
Insert screen

Insert frame

Move
element

Pushbutton
with text and
function code

B You can change the layout of a screen with the script language used by GuiXT. You can:

* Move objects

¢ Insert screens

¢ Insert pushbuttons

¢ Insert value helps

* Change the input attributes of fields
* Delete screen elements

® You are provided with complete documentation of GuiXT with the installation. You can find more

information on the homepage of the GuiXT vendor, http://www.synactive.com.

(C) SAP AG

BC410

10-11

Starting Transaction Variants H’
DA

Options for starting transaction variants

® Test environment
® Transaction code

® From user menu

© SAP AG 2002

B You have the following options for starting a transaction variant:
* Test environment
* Transaction code of type variant transaction

¢ User menu

B You can test the process flow of the transaction in the test environment of transaction variant
maintenance. This is intended primarily for developers who are creating transaction variants.

®m To hang a variant transaction in a user menu or role, you must create a transaction code of type variant
transaction.

(C) SAP AG BC410 10-12

Creating Variant Transactions

Transaction Maintenance

Transaction code
name

Create

& Display | &/ Change

Create transaction

Transaction attributes

O Dialog transaction
O Report transaction

(O 00 Transaction
@Variant transaction

Parameter transaction

v X

© SAP AG 2002

m To start a transaction variant from a menu, you must create a transaction code of type variant
transaction. You can navigate there directly from the maintenance screen for the transaction variants.
Alternatively, you can start the corresponding transaction from the ABAP Workbench.

(C) SAP AG BC410 10-13

Inserting Variant Transactions into Menus

]

I Transaction

YRole menu

[] Office

[Logistics

[]Information Systems

Y S Tools

[_1ABAP Workbench
[_]Administration
[_1Web Development

© SAP AG 2002

® Role

® Area menu

B You can insert the transaction in a menu by maintaining:
* Arole

* An area menu.
m The user can immediately see the changes made in this way.

(C) SAP AG BC410

10-14

Personalization: Unit Summary

. You are now able to:

® Create transaction variants that you can assign to
users using the above methods

© SAP AG 2002

(C) SAP AG BC410 10-15

Control Framework: Unit Objectives H’
AP

At the conclusion of this unit, you will be able to:

® Explain the principles for using controls when
developing user dialogs.

Describe the basic conditions for using controls.

Identify sources for obtaining more information.

© SAP AG 2002

(C) SAP AG BC410

10-16

Object Orientation !'
A

Attributes

=;\Ilethod
Method

Functions and data Software objects Obijects of the real world
Data model as abstraction Object model as abstraction
of the real world of the real world
© SAP AG 1999

® In the past, information systems were primarily defined by their functions. Data and functions were kept
separately and were linked with one another using input-output relationships.

m Object-oriented programming is based on abstract or concrete items that represent the real world. The
state and characteristics of the objects are mapped by their inner structure and attributes (data). The
behavior of the objects is described with methods (functions).

m Objects form a capsule connecting the state with the corresponding behavior. Objects should permit a
one-to-one representation of the model of a problem area and a proposed solution.

m EnjoySAP Controls are special pairs of objects. They consist of a GUI object that is implemented at the
front end as an ActiveX control or Java Bean and a (proxy) object at the back end. The latter is an object
in your application and is created and edited using ABAP objects. The ABAP Workbench supports you
here with global classes.

(C) SAP AG BC410 10-17

Public
~ access

Address

Private A

list Uo |

FLIGHT

© SAP AG 2002

®m An object basically has two layers - inside and outside:

* Public components: The object components that are visible from outside, such as attributes, methods,
and events. The public components can be used directly by all users. The public components of an
object make up the interface of this object.

* Private components: These components are visible only within the object. They can also be
attributes, methods and events.

m The aim is to have an object itself ensure that it is consistent. For this reason, the data is normally
internal, that is, it has private attributes. The internal (private) attributes of an object can be manipulated
only with methods of this object (encapsulation). In general, only methods that manipulate the data and
ensure that the object is consistent are offered as public components.

®m An object also has a unique identification to distinguish it from other objects with the same attributes
and methods.

(C) SAP AG BC410 10-18

Classes, References, and Objects

&Z

© SAP AG 2002

m Classes describe the attributes and methods of a set of objects. There are two parts to this description: the
attributes and methods are declared and then the methods are implemented.

m Each object belongs to a class. To create an object of a class, you must first declare an object reference
variable (... TYPE REF TO <cl_name>). You can then create (instantiate) an object of this class using
the ABAP object keyword CREATE OBJECT <reference>.

® An ABAP program can work with any number of runtime instances of the same class. The individual
runtime instances represent objects that can be uniquely identified and are addressed with the
corresponding object references.

® You can call a method of an object with CALL METHOD. You must specify the name of the method
and the object with whose attributes the method is executed. The syntax for this is: CALL METHOD
<reference>-><method>, where <reference> is a reference variable pointing to an object and <method>
is a method of the class of this object. The operator -> is called the object component selector.

B You can also call methods dynamically using parentheses in the same way as in other ABAP statements
(Dynamic Invoke). In contrast to dynamic subroutine and function module calls, you can also pass the
parameters and handle exceptions dynamically (see documentation on CALL METHOD).

(C) SAP AG BC410 10-19

CFW as Seen by the Programmer: Classes H’
DA

CL_GUI_PICTURE

CL_GUI_HTML_VIEWER

CL_GUI_TREE_CONTROB

CL_GUI_OBJECT

CL_GUI_TEXTEDIT

CL_GUI_CONTROL

CL_GUI_ALV_GRID

CL_GUI_CONTAINER
CL_GUI_CUSTOM_CONTAINER
CL_GUI_DOCKING_CONTAINER
CL_GUI_SPLITTER_CONTAINER
CL_GUI_EASY_SPLITTER_CONTAINER
CL_GUI_DIALOGBOX_CONTAINER

© SAP AG 2002

®m To use the Control Framework as described here, you need an R/3 System with at least Release 4.6A and
a locally installed SAP GUI with Release 4.6A.

m The Control Framework provides you with a number of global classes, for example:
¢ CL_GUIL_TEXTEDIT Text editor

CL_GUI_HTML_VIEWER Web browser

CL_GUI_PICTURE Display of pictures

CL_GUI_TREE_CONTROL Hierarchy display in tree form

CL_GUI_ALV_GRID List display

CL_GUI_CFW Central services for communicating with the GUI controls

CL_GUI_CONTAINER Special controls used to hold additional controls

(C) SAP AG BC410 10-20

Control Framework: Implementation of Controls

Basic terminology
, Implementation of controls

Communication with controls

Sources of information

© SAP AG 2001

(C) SAP AG BC410 10-21

Principles of Control Processing H’
DA

EnjoySAP Control:
Life cycle

® Generating the control and
integrating it in a screen

® Using method calls to pass information between the
application server and the presentation server

® Event handling: the program's reaction to a change in status
of the control

® Releasing memory used by the control

© SAP AG 2002

(C) SAP AG BC410

10-22

Screen Element Custom Container: Use

/

100
Container
control
HTML Viewer control
" ®

&y

© SAP AG 2002

m Each EnjoySAP control resides in a container control. The container control provides space for
displaying other controls on the screen. Container controls are themselves EnjoySAP controls and can
therefore, be nested.

m There are different kinds of container controls. This training course will discuss only the SAP Custom
Container.

B You define a customer control area on the screen for the SAP Custom Container. The SAP Custom
Container is stored here at run time and then reserves space for your application control.

(C) SAP AG BC410 10-23

Creating a Screen Element Custom Container

Element
toolbar

%2

© SAP AG 2002

Screen Painter: Layout Editor

Area

A\

Screen element:

Type :CUSTOM CONTROL
Name : MY_CONTAINER
Resizing Minimum size

vertical X' 10
horizontal :'X' 20

®m You define the custom control area on your screen with the Layout Editor in the Screen Painter.

B You assign the Custom Container area a name and maintain the corresponding static attributes. You

define the size and resize parameters for the area.

(C) SAP AG

BC410

Creating a Container Control Instance

* data declarations

DATA: container TYPE REF TO cl gui custom container.

* PBO of screen containing MY CONTAINER
MODULE create objects OUTPUT.
* create objects only one time

CHECK container IS INITIAL.

* create container object

CREATE OBJECT container

EXPORTING container_name = 'MY CONTAINER'.

ENDMODULE .

© SAP AG 2002

m In your ABAP program, you first define a reference variable referring to the global class
cl_gui_custom_container.

m Next you instantiate an appropriate object for the PBO of your screen. You pass the name of the Custom
Container area to the SAP Custom Container.

m Make sure that only one instance of the SAP Custom Container is created on your screen. The runtime
system simply places further instances in the area and the previous control can no longer be used. All the
methods applied are thus lost. In this case, only the corresponding ABAP object on the back end is
removed by the Garbage Collector.

(C) SAP AG BC410 10-25

Example HTML Viewer |

DATA: container TYPE REF TO cl gui custom container,
html viewer TYPE REF TO cl gui_ html viewer,
url (255) value ‘http://www.sap.com'

START-OF-SELECTION.

CALL SCREEN '0100'.

_
SOLUTIO NS @9

PROCESS BEFORE OUTPUT.

Check out the mySAP.com
information center!

MODULE create objects. s S s oo gTge | O Stop Businoss.
MODULE set url.
PROCESS AFTER INPUT.

MODULE exit AT EXIT-COMMAND.

© SAP AG 2002

m The browser installed on the front end is used for an HTML Viewer.

m In the ABAP program, you declare a reference variable for global class cl_gui_html_viewer. In a PBO
module, you create an appropriate instance and declare the container control (in which the SAP HTML
Viewer resides) as a parameter.

® You can define a Uniform Resource Locator (URL) by calling a method in a module in the PBO event.
The corresponding resource is then displayed on the screen.

m Make sure that the objects at the front end and back end release the corresponding storage area before
leaving the program. Otherwise unwanted processes might remain active at the front end.

®m You can use the following module, for example:

MODULE exit INPUT.
CALL METHOD html_viewer->free. " destroy the GUI object
CALL METHOD container->free.

FREE html_viewer. " destroy the ABAP object
FREE container.

LEAVE PROGRAM.

ENDMODULE. "EXIT INPUT

(C) SAP AG BC410 10-26

Example HTML Viewer Il

MODULE create objects OUTPUT.
CHECK container IS INITIAL.
* create the container
CREATE OBJECT container
EXPORTING container_name = 'MY_ CONTAINER'.
CHECK html viewer IS INITIAL.
* create the control
CREATE OBJECT html viewer
EXPORTING parent = container.

ENDMODULE.

MODULE set url OUTPUT.
* call method for setting url
CALL METHOD html viewer->show_url
EXPORTING url = url.
ENDMODULE.

© SAP AG 2002

B You need to generate only a single instance of the HTML Viewer at run time. Previous instances will be
hidden and the corresponding methods will be lost.

®m You can insert method calls into your program code using the corresponding statement template or
simply by using Drag&Drop.

(C) SAP AG BC410 10-27

Control Framework: Communication with Controls

Basic terminology

Implementation of controls
, Communication with controls

Sources of Information

© SAP AG 1999

(C) SAP AG BC410 10-28

Method Calls

Method calls ‘ GUI object

CALL METHOD <ref>-><meth>
EXPORTING
IMPORTING

ABAP ol)ject

© SAP AG 1999

m If you call a method of an EnjoySAP control in your ABAP program, the corresponding ABAP object
passes the call to the Control Framework.

m It in turn calls a method of the corresponding GUI object at the front end.

m The data is transported between the back end and the front end.

(C) SAP AG BC410 10-29

SAP HTML Viewer: Features H’
DA

| GET_CURRENT_URL |

Key:
| SET_UI_FLAG | Class: cl_gui_html_viewer ‘
| STOP | l—(Method name |
| DO_REFRESH | control
| Go_BACK | (L
| GO_FORWARD | Viewer /Constructor |
GO_HOME
[eo. | | SHOW_URL /
File format: w
< > html QA ; | SHOW_URL_IN_BROWSER |/
.>.gif e @ | LOAD_HTML_DOCUMENT |

>.jpg e I y [LOAD_MIME_OBJECT /
..>.bmp
.>.doc [LOAD_DATA /
.>.xl Back

xls \ szwar : / SHOW _DATA /

Copy

e o o o o o o
T

.|.T.RACK_CONTEXT_MENU|

© SAP AG 1999

m The SAP HTML Viewer has the following methods:
¢ Service functions:
- Initialize: constructor
- Configure: set_ui_flag
Info: get_current_url
Context menu: track_context_menu
* Navigation: stop, do_refresh, go_back, go_forward, go_home
¢ Data sources:
- External: show_url, show_url_in_browser
- SAP Web Repository: load_html_document, load_mime_object
- SAP Data Provider: load_data, show_data
®m You can find further information in the online documentation about global class cl_gui_html_viewer.

(C) SAP AG BC410 10-30

© SAP AG 2002

B An object can declare that its state has changed by triggering an event.

m Other objects can contain handling methods that are executed when the event occurs.

m In contrast to normal method calls in which the calling program has control and knows the method
called, the program triggering an event does not know what will handle this event. This is true for both
the time when the event is defined and the time when the event occurs at run time.

m A class can thus define static events and an object can trigger events at run time without having to know
whether and how they are used.

m [f a GUI object of an EnjoySAP control triggers an event at the front end, the Control Framework makes
sure that the corresponding ABAP object triggers an event that the instances of other ABAP objects can
react to with their handling methods at the back end.

(C) SAP AG BC410 10-31

Creating a Model Solution Using the EnjoySAP

Controls

@ | (I H I Cad SEHE DDhan|
Flugdaten (Pflege Fiugdaten)
b L Alitalia [2]
[» 1 American Aifines [~]
0 (] Delta Aitines: 5 20.04.2000
b L] Lufthansa
2 | Qantas Airways
% (3 FRANKFURT-SINGAPORE URETZRZY podus,
B 18032000 BuD O Ansicht
B 01.04.2000 Flugzeugty- a319 ® Pflege Flugdaten
[E1 15042000 Max Bolegung 220 ©) Pflegs Buchungen
g ST ¢12
5 prm A Bumme. 311.152,37
B 1006 2000 -
B 2406 2000 ' lgg Pflege Buchungen |
[31 08072000
E 22.07.2000 Pflege Buchungsdaten
0%.08.2000
Buchun. nder =— = =
Eli Gasn e P BEREEIERERIEEEEREN
B 16092000 6991 516 P! nNr|Flugdatum | Buchung|Kundennr.|. 18| Gepackgew.MaB|R Betrag {Fremudwahrung)|ins
B 20.09.2000 :333 Z;g; g &|29.04.2000 B30 2081 [P 0 JKG | |v 1.832.949 [ITL[<]
B 14102000 /28.04.2000 5941 516|P 0 [KG [%|F 1.842175 [ITU[]
fe1}ze 1o anen aiy i i 5(29.08.2000 R 085 [P 0 KG [T 1.890,00 |OE
B 11112000 % s P it 2 |
Bl 2511 2000 T 6(29.04.2000 6394 2602 [P 10,2000 [KG | |F 1.785,01 |DE
[02.12.2000 poss Bes1 P 6(29.04.2000 6995 3006 |F 0 [KG [|7 1.785,01 |DE
81 23122000 oo fire P 529042000 GEED 1631 |F 17,6000 [KG | |7 2.044.388 |ITL
S Sﬁ E} zsgl ffese o7 3 6|29.04.2000 [EE 4152 |P 0[KG | |F 1842175 [ITll
B [626042000 [EEE] 3451 |F 0 [KG | |7 1.168,74 |Ui
B 17022001 il BE 6|26.04.2000 [EE 1776 |F 51000 [KG | |7 1.895,01 |Di
B 03032001 = (26042000 7000 687 |F 0 [KG | |F 2.100,00 |D|
(20 042000 7001 1064 [F 17,3000 |KG | |7 1.785,01 |Di
&(29.04.2000 7002 4284 [P 0 [KG [x]¥ 1737.735 [muf
6(29.04.2000 7003 3160 P 11,2000 |[KG [%|F 1.942.175 [T
5/29.04.2000 7004 3370[P % 0K | |7 993,43 UL
6(29.04.2000 7005 2857 |P 0 |Ke [x]Y 1.890,00 |Di
6(29.04.2000 7006 4041 P 51000 |KG | |F 1.890,00 |Di L
6(26.04.2000 7007 3432 F 0 [KG [<]Y 1.895,01 |DE—
(25022000 7008 4466 |F 0 [KG [X[F [EEEEED =
mihd
[l I I[«][»]
© SAP AG 2002

B You could have created the flight maintenance transaction using a new programming template in
EnjoySAP Controls.

m An SAP Tree Control is used to display the selection of flights. The booking data is displayed in a list
using an ALV Grid Control.

(C) SAP AG BC410 10-32

Control Framework: Sources of Information

Basic terminology

Implementation of controls
Communication with controls

, Sources of information

© SAP AG 2001

(C) SAP AG BC410 10-33

Sources of Information

BC412
Dialog Programming
Using EnjoySAP Controls

Workbench Edition:

Controls Technology

© SAP AG 2002

m Further information on developing user dialogs using EnjoySAP Controls can be found in the Object
Navigator under Environment = Controls examples in the online documentation and in the SAPNet
Help Portal, http://help.sap.com/.

® You can find a detailed description of how to implement and use the various EnjoySAP Controls in the
book ABAP Workbench Edition: Controls Technology 4.6. The book is available from the SAPShop
(order number 50032529).

(C) SAP AG BC410 10-34

Control Framework: Unit Summary H’
DA

. You are now able to:

® Explain the principles for using controls when
developing user dialogs.

Describe the basic conditions for using controls.

Identify sources for obtaining more information.

© SAP AG 2002

(C) SAP AG BC410 10-35

Requirements of F4 Help

Finding
values

>

Context sensitivity Values replaced

© SAP AG 2002

Various things are required of input help for a screen field (the search field) as described in the
following text.

The input help must take into account information that the system already knows (the context). This
includes both information that the user has entered on the current screen, and information from previous
dialog steps. The input help normally uses the context to restrict the set of possible values.

The input help must find out the values that it then presents to the user for selection. It must also
determine the data that will be displayed as additional information in the list of possible values. In
determining the possible values, it must take into account restrictions that arise from the context, as well
as those entered by the user as specific search conditions.

The input help must conduct a user dialog. This involves (at least) displaying the possible values with
additional information, and allowing the user to choose a value from it. In many cases, the input help
will also contain an input screen on which the user can specify conditions to restrict the number of
possible entries displayed.

When the user selects a value, the input help must place it in the search field. In many cases, there are
extra fields on the input screen (often only output fields), containing extra information about the search
field. The input help should also update the contents of these fields.

(C) SAP AG BC410 10-36

ABAP Dictionary Object: Search Help

Selection Dialog behavior
method

>
Search help

Interface

© SAP AG 2002

The ABAP Dictionary object search help is a description of an input help. Its definition contains the
information that the system requires to meet the user’s needs.

The interface of the search help controls the data that is passed between the input screen and the F4
help. The interface determines the context data that is required and the data that can be placed back on
the input screen when the user chooses a value.

The internal behavior of the search help describes the actual F4 process. This contains the selection
method, which retrieves the values for display, and the dialog behavior, which describes the interaction
with the user.

Similarly to function modules, search helps have an interface, which defines their capacity to exchange
data with other software components, and an internal behavior (which, in the case of a function module,
1s its source code).

It is only worth defining a search help if there is a mechanism that allows you to address it from a screen.
This mechanism is called a search help connection.

Like the function module editor, the search help editor also allows you to test your objects. This allows
you to check how a search help behaves before you assign it to a screen field.

(C) SAP AG BC410 10-37

Using Search Helps

Search help

Internal behavior

Interface

Connection
in Dictionary

,Field 1 Bearch field Field 3

wmmm— .
. - +Table/structure __ - -
- /
- / .
—

- Definitions in

Screen Painter

© SAP AG 2002

m A search help describes the process of an input help. In order for it to work, you need a mechanism that
assigns the search help to the field. This is called the search help connection.

m Connecting a search help to a field affects its behavior. It is, regarded as part of the field definition.

m The semantic and technical attributes of a screen field (type, length, and F1 help) are normally not
directly defined directly when you define the screen. Normally, you use a reference in the Screen Painter
to an existing field in the ABAP Dictionary. The screen field then inherits the attributes of the ABAP
Dictionary field.

The same principle applies when you define input help for a screen field. The link between the search
help and the search field is established using the ABAP Dictionary field, not the screen field.

B When you assign a search help, its interface parameters are assigned to the screen fields that are filled by
the search help or that pass information to it from the screen. The search field must be assigned to an
EXPORT parameter of the search help. You should also make the search field an IMPORT parameter so
that the search help can take into account a search pattern already entered in the field by the user.

m A field can have input help even if it does not have a search help; there are other mechanisms for F4 help
(for example, fixed values for a domain).

(C) SAP AG BC410 10-38

Search Help Assighment in ABAP Dictionary

Search help

Internal behavior ‘

Interface

Check table =T _ -
- ’| - !l / / / Data element

MANDT | Key1 Key2 Data
\ AN a

L - // / / i

N AR S / / /
\ \ \
S\ \
AN VA / /
\ \ V4N 7 /4
MANDT | Field1 [Search field Field 3

Table/structure

© SAP AG 2002

®m You can link a search help to a field in the ABAP Dictionary in three ways: by assigning it directly to a
field, by assigning it to a check table, or by assigning it to a data element.

It can be assigned directly to a field of a structure or table. You define this link in very much the same
way as you would define a foreign key. You should define the assignment here (between the interface
parameters of the search help and the structure field). The system generates a proposal.

If the field has a check table, its contents are automatically proposed as possible values in the input help.
The key fields of the check table are displayed. If the check table has a text table, the first non-key
character field is also displayed. If the default display is insufficient for your requirements, you can
attach a search help to the check table. This search help is then used for all fields that have that check
table. When you link the search help, you must define the assignment between the search help’s
interface and the key of the check table.

The semantics of a field and its possible values are defined by its data element. You can therefore also
link a search help to a data element. The search help is then used by all fields that are based on that data
element. When you link the search help, you must specify a single EXPORT parameter, which will be
used to transfer the data.

Attaching a search help to a check table (or data element) increases its reusability, however, it does
restrict your options for passing extra values to the search help interface.

(C) SAP AG BC410 10-39

Input Help Mechanisms Hr
DA

-....._. —p Exists
Field search help | ==:p> Does not exist

.
.
.
.

A

v Check table help |
Search help for
screen field a
- Search help Search help for
for check table data element
v 4
Check table with
_ text table Fixed valueﬁ
|FTELD . vALUES. v
Key values 4
of check table Clock or
calendar help

© SAP AG 2002

m To allow as many fields as possible to carry useful input help, the R/3 System contains a wide range of
mechanisms with which you can define input help. If it is possible to use more than one of these
mechanisms for a particular field, the one highest in the hierarchy is used.

m In addition to defining the input help for a field in the ABAP Dictionary (as you have already seen), you
can also define it in the screen field. An advantage of this method is that you cannot reuse it
automatically.

m The screen event POV (PROCESS ON VALUE-REQUEST) allows you to program input help for a
field yourself. You can make this help appear in standard form by using the function modules
FAIF_FIELD_VALUE_REQUEST or FAIF_INT_TABLE_VALUE_REQUEST.

However, you should first check to see you cannot program your own input help better using a search
help exit (see appendix).

B You can also attach a search help to a screen field in the Screen Painter. However, the functional scope
of this technique is more restricted than attaching a search help in the ABAP Dictionary.

®m You should no longer use input checks programmed directly in the flow logic (and from which input
help can be derived).

m The context menu (available with right-click) for the hit list contains a Technical info function. This tells
you which mechanism is being used in a particular case.

(C) SAP AG BC410 10-40

Defining Tabstrip Controls on the Selection Screen

SELECTION-SCREEN BEGIN OF SCREEN 101 AS SUBSCREEN.

SELECTION-SCREEN END OF SCREEN 101.
SELECTION-SCREEN BEGIN OF SCREEN 102 AS SUBSCREEN.

SELECTION-SCREEN END OF SCREEN 102.

SELECTION-SCREEN BEGIN OF TABBED BLOCK blockname FOR n LINES.
SELECTION-SCREEN TAB (length) tabnamel USER-COMMAND ucomml DEFAULT SCREEN 101.
SELECTION-SCREEN TAB (length) tabname2 USER-COMMAND ucomm2 DEFAULT SCREEN 102.
SELECTION-SCREEN END OF BLOCK blockname.

INITIALIZATION.
tabnamel = TEXT-001. "TEXT-001 EN: Connection
tabname2 = TEXT-002. "TEXT-002 EN: Flight

Connection | Flight I

Airline [[=
Connection | [X

© SAP AG 2002

®m You define a subscreen for a tabstrip control on a selection screen as follows:
SELECTION-SCREEN BEGIN OF TABBED BLOCK <blockname> FOR <n> LINES.
SELECTION-SCREEN END OF BLOCK <blockname>.
The size of the subscreen area in lines is defined by <n>.

m The system automatically generates a CONTROLS statement: CONTROLS:
TABSTRIP_BLOCKNAME TYPE TABSTRIP. Do not write your own CONTROLS statement. If you
try to do so, a syntax error results.

B You define the individual tab pages as follows:
SELECTION-SCREEN TAB (length) <name> USER-COMMAND <ucomm> [DEFAULT
[PROGRAM <prog>/SCREEN <dynnr>]].
Optional additions:
[DEFAULT [PROGRAM <prog>/SCREEN <dynnr>]].
If you use the DEFAULT addition, you must also use the SCREEN addition. The PROGRAM addition
is optional. You need it only if the screen comes from another program.

®m You can delay specifying the link between the tab title and the selection screen until run time. You can
also change an existing assignment at run time. To do this, fill the blockname structure. This is created
automatically for every tabstrip block. The structure has the same name as the tabstrip block and
contains the PROG, DYNNR, and ACTIVETAB fields. For further information, refer to the online
documentation SUB-2.

(C) SAP AG BC410 10-41

1 my_control-top_line
. ; _ ABAP
itab_spfii DATA: looplines LIKE sy-loopc. -
1 MODULE [(-3 oYl 3 B8 I-1- 08 OUTPUT .
2 looplines = sy-loopc.
i ENDMODULE .
2 MODULE user command 0200 INPUT.
: CASE ok code.
7 -
8 WHEN 'P++' OR 'P+' OR 'P-' OR 'P--'.
CALL FUNCTION [¥={ei:le) s (s v V=i
EXPORTING
entry act = my control-top line
entry to = my control-lines
loops = looplines
S ok_code = ok_code
creen
IMPORTING
PROCESS BREFORE OUTEUT. entry new = my control-top line
LOOP. .. . Y_ y_ P_ :
iYenjunlget looplinesf cc
ENDLOOP. ENDCASE.
ENDMODULE.
© SAP AG 2002

B You can scroll a page at a time in a table control using the table control attribute,
<ctrl>-top_line.

m In the PAI processing block, you need to know the current number of lines in the corresponding table
control.

m The sy-loopc system field contains the number of table control lines in the PBO processing block.
However, in the PAI it contains the number of filled lines.

m SY-LOOPC is filled only between LOOP and ENDLOQP, since it always refers to the current loop.

m Use the SCROLLING_IN_TABLE function module for scrolling.

(C) SAP AG BC410 10-42

Documentation References

Ref. Path in Documentation

GUI-1 In Menu Painter: Goto — Interface objects,
Function key settings — <name> — Pushbutton settings,
Interface — Subobject— Create

GUI-2 |SAP Library— Basis— ABAP Workbench— BC ABAP Workbench Tools— ABAP
Workbench: Tools — Menu Painter — Functions

GUI-3 |In Menu Painter: Utilities— Help texts — Internal key number

GUI-4 |In Menu Painter: Utilities— Help texts — Standards/proposals

ILS-1 In ABAP Editor: Utilities— Help on...;, ABAP term: READ

ILS-2 In ABAP Editor: Utilities— Help on...;, ABAP term: MODIFY

ILS-3 In ABAP Editor: Utilities— Help on...;, ABAP term: GET CURSOR

DIA-1 | SAP Library — Getting Started with the SAP System — Layout Menu

DIA-2 SAP Library— Basis— ABAP Workbench— BC ABAP Workbench Tools— ABAP
Workbench: Tools— Screen Painter— Defining the Element Attributes

DIA-3 SAP Library— Basis— ABAP Workbench— BC ABAP Workbench Tools— ABAP
Workbench: Tools— Screen Painter— Creating Screens

(C) SAP AG BC410 10-43

OUT-1

In Screen Painter: Goto— Translation

OUT-2

SAP Library — Basis — ABAP Workbench — BC - SAP Style Guide — R/3 Icons and
symbols— Icons — Icons as status displays.

INP-1

SAP Library — Basis — ABAP Workbench — BC — SAP Style Guide — Interface
elements — Input/output fields

INP-2

SAP Library— Basis— ABAP Workbench— BC ABAP Workbench Tools— ABAP

Workbench: Tools— Screen Painter— Defining the Element Attributes — Choosing Field

Formats

INP-3

SAP Library — Basis — ABAP Workbench — BC - SAP Style Guide — Functions —
General Guidelines and Overview — Navigation Functions - Overview— Overview of
Navigation Options

INP-4

SAP Library — Basis — ABAP Workbench — BC - SAP Style Guide — Functions —

General guidelines — Navigation Functions — Overview — Comparison of Exit, Back,
and Cancel.

SUB-1

SAP Library — Basis — BC — ABAP Programming and Runtime Environment — BC -
ABAP Programming— ABAP User Dialogs— Screens— Complex Screen
Elements—Tabstrip Controls

SUB-2

SAP Library — Basis — BC — ABAP Programming and Runtime Environment — BC -
ABAP Programming — ABAP User Dialogs— Selection Screens — Subscreens and
Tabstrip Controls on Selection Screens

TAB-1

SAP Library — Basis — BC — ABAP Programming and Runtime Environment — BC -
ABAP Programming — ABAP User Dialogs— Screens — Complex Screen
Elements—Table Controls

(C) SAP AG BC410

10-44

	sample.pdf
	sterling.com
	Welcome to Sterling Software

